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Cooperative multi-agent systems

What kind of systems?
Groups of agents with control, sensing, communication and computing

Each individual
senses its immediate environment
communicates with others
processes information gathered
takes local action in response
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Self-organized behaviors in biological groups
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Decision making in animals

Able to
deploy over a given region

assume specified pattern

rendezvous at a common point

jointly initiate motion/change direction in a
synchronized way

Species achieve synchronized behavior
with limited sensing/communication between individuals

without apparently following group leader

(Couzin et al, Nature 05; Conradt et al, Nature 03)
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Engineered multi-agent systems

Embedded robotic systems and sensor networks for
high-stress, rapid deployment — e.g., disaster recovery networks

distributed environmental monitoring — e.g., portable chemical and
biological sensor arrays detecting toxic pollutants

autonomous sampling for biological applications — e.g., monitoring of
species in risk, validation of climate and oceanographic models

science imaging — e.g., multispacecraft distributed interferometers flying
in formation to enable imaging at microarcsecond resolution

ur focus is on the Pacific Ocean, largely because of 

its potential importance to the North American climate.  

We have recently shown that more than 75% of the 

black carbon over the west coast of North America was 

the result of transport across the Pacific from East Asia 

and other regions (  2006) during springtime 

and possibly other seasons as well.  We have also 

shown the dust-soot mixture has a large impact on TOA 

and surface radiative forcing and atmospheric solar 

heating rates.  However, we do not know the magnitude 

of the impact on clouds through the indirect effect, a 

potentially important mechanism for regulating cloud 

forcing.  

 is one 

major motivating factor for this proposed study.

here have been very few campaigns to examine how 

particles transported across the Pacific Ocean influence 

clouds and radiative forcing in the region.  In April 2004, the 

Cloud Indirect Effects Experiment (CIFEX) (  

2003; 

) followed the Intercontinental Transport and Chemical 

Transformation (ITCT) campaign, undertook a pilot 

examination with airborne aerosol and cloud instruments 

onboard the University of Wyoming’s  aircraft.  The 

collected data provided unique insights into the role of long-

range transport of aerosols across the Pacific Ocean (

 2006;  2006;  2006).  First, 

 2006 demonstrated that aerosols from long-

range transport were the dominant source of black carbon 

and other fine particles above 2 km over the west coast of 

North America during spring time (Figure 6).  Second, the 

size distribution of these particles had markedly different 

characteristics when compared with marine sources or North 

American sources (Figure 7).  Lastly, the particles provided 

efficient source of CCN (  2006) and nucleated 

cloud drops that in turn reduced the drop radii (Figure 8) and 

enhanced the cloudy sky albedo (  2006).

Figure 6: CFORS fraction of Asian BC to total BC as a function 
of altitude at 130°W ( ., 2006).

The UAV fleet at  Airport, the Maldives during the MAC 
campaign in March 2006.Sandia National Labs UCSD Scripps MBARI AOSN NASA
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Research challenges

What useful engineering tasks can be performed

with limited-sensing/communication agents?

Dynamics simple interactions give rise to
rich emerging behavior

Feedback rather than open-loop computation
for known/static setup

Information flow who knows what, when, why, how,
dynamically changing

Reliability/performance robust, efficient, predictable behavior

How to coordinate individual agents into coherent whole?

Objective: systematic methodologies to design and analyze
cooperative strategies to control multi-agent systems
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Research program: what are we after?

Design of provably correct coordination algo-
rithms for basic tasks

Formal model to rigorously formalize, analyze,
and compare coordination algorithms

Mathematical tools to study convergence, sta-
bility, and robustness of coordination algorithms

Coordination tasks
exploration, map building, search and rescue,
surveillance, odor localization, monitoring, distributed sensing
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Technical approach

Optimization Methods

resource allocation
geometric optimization
load balancing

Geometry & Analysis

computational structures
differential geometry
nonsmooth analysis

Control & Robotics

algorithm design
cooperative control
stability theory

Distributed Algorithms

adhoc networks
decentralized vs centralized
emerging behaviors

Bullo & Cortés (UCSB/UCSD) Distributed Coordination Algorithms May 17, 2009 8 / 97



What we will see in this lecture

Basic motion coordination tasks:
get together at a point, stay connected, deploy over a region

CENTROIDAL VORONOI TESSELLATIONS 649

Fig.2.2 A top-viewphotograph,usinga polarizing�lter,of theterritoriesof themale Tilapia
mossambica;eachisa pitduginthesandbyitsoccupant.The boundariesoftheterritories,
therimsofthepits,forma patternofpolygons.The breedingmalesare theblack�sh,which
range in sizefrom about 15cm to 20cm. The gray �share thefemales,juveniles,and
nonbreedingmales.The �shwitha conspicuousspotinitstail,intheupper-rightcorner,
isa Cichlasomamaculicauda.Photographand captionreprinted from G. W. Barlow,
HexagonalTerritories, Animal Behavior,Volume 22,1974,by permissionofAcademic
Press,London.

As anexampleofsynchronoussettlingforwhich theterritoriescanbevisualized,
considerthemouthbreeder�sh(Tilapiamossambica).Territorialmalesofthisspecies
excavatebreedingpitsinsandybottomsby spittingsandaway fromthepitcenters
towardtheirneighbors.Fora highenoughdensity of�sh,thisreciprocalspitting
resultsinsandparapetsthatarevisibleterritorialboundaries.In[3],theresultsof
a controlledexperimentweregiven.Fishwereintroducedintoa largeoutdoorpool
witha uniformsandybottom.Afterthe�shhad establishedtheirterritories,i.e.,
afterthe�nalpositionsofthebreedingpitswereestablished,theparapetsseparating
theterritorieswerephotographed.InFigure2.2,theresultingphotographfrom[3]
isreproduced.The territoriesareseentobepolygonaland,in[27,59],itwasshown
thattheyareverycloselyapproximatedby a Voronoitessellation.

A behavioralmodelforhow the�shestablishtheirterritorieswasgiven in[22,
23,60].When the�shentera region,they�rstrandomlyselectthecentersoftheir
breedingpits,i.e.,thelocationsatwhich theywillspitsand.Theirdesiretoplacethe
pitcentersasfaraway aspossiblefromtheirneighborscausesthe�shtocontinuously
adjustthepositionofthepitcenters.Thisadjustmentprocessismodeledasfollows.
The�sh,intheirdesiretobeasfarawayaspossiblefromtheirneighbors,tendtomove
theirspittinglocationtowardthecentroidoftheircurrentterritory;subsequently,the
territorialboundariesm ustchangesincethe�sharespittingfromdi�erentlocations.
Sinceallthe�shareassumedtobe ofequalstrength,i.e.,theyallpresumablyhave

Design coordination algorithms that achieve these
tasks and analyze their correctness and time complexity

Expand set of math tools: invariance principles for
non-deterministic systems, geometric optimization, non-
smooth stability analysis

Robustness against link failures, agents’ arrivals and de-
partures, delays, asynchronism

Image credits: jupiterimages and Animal Behavior
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Text: Distributed Control of Robotic Networks

1 intro to distributed algorithms
(graph theory, synchronous networks,
and averaging algos)

2 geometric models and geometric
optimization problems

3 model for robotic, relative sensing
networks, and complexity

4 algorithms for rendezvous, deployment,
boundary estimation

Status: Freely downloadable at
http://coordinationbook.info
with tutorial slides & software libraries.
Shortly on sale by Princeton Univ Press
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Outline

1 Models for multi-agent networks

2 Rendezvous and connectivity maintenance
Maintaining connectivity
Circumcenter algorithms
Correctness analysis via nondeterministic systems

3 Deployment
Expected-value deployment
Geometric-center laws
Disk-covering and sphere-packing deployment

4 Synchronized boundary patrolling
Balanced synchronization
Unbalanced synchronization

5 Conclusions
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Models for multi-agent networks

References
1 I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation

of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999

2 N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997

3 D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997

4 S. Mart́ınez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic
networks – Part I: Models, tasks and complexity. IEEE Transactions on
Automatic Control, 52(12):2199–2213, 2007

Objective
1 meaningful + tractable model
2 feasible operations and their cost
3 control/communication tradeoffs
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Robotic network

A uniform/anonymous robotic network S is
1 I = {1, . . . , N}; set of unique identifiers (UIDs)
2 A = {A[i]}i∈I , with A[i] = (X, U, f) is a set of physical agents
3 interaction graph

Disk, visibility and Delauney graphs
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Communication models for robotic networks

Delaunay graph r-disk graph r-Delaunay graph

r-limited Delaunay graph Gabriel graph EMST graph

Relevant graphs
1 fixed, directed, balanced
2 switching
3 geometric or state-dependent
4 random, random geometric

Message model
1 message
2 packet/bits
3 absolute or relative positions
4 packet losses
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Prototypical examples

Locally-connected first-order robots in Rd Sdisk

n points x[1], . . . , x[n] in Rd, d ≥ 1

obeying ẋ[i](t) = u[i](t), with u[i] ∈ [−umax, umax]

identical robots of the form

(Rd, [−umax, umax]
d, Rd, (0, e1, . . . , ed))

each robot communicates to other robots within r

Variations
1 SD same dynamics, but Delaunay graph
2 SLD: same dynamics, but r-limited Delaunay graph
3 Svehicles: same graph, but nonholonomic dynamics
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Synchronous control and communication

1 communication schedule T = {t`}`∈N0 ⊂ R≥0

2 communication alphabet L including the null message
3 set of values for logic variables W

4 message-generation function msg : T×X ×W × I → L
5 state-transition functions stf : T×W × LN → W
6 control function ctrl : R≥0 ×X ×W × LN → U

Transmit

and

receive

Update

processor

state

Update physical state
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Task and complexity

Coordination task is (W, T) where T : XN ×WN → {true, false}
Logic-based: achieve consensus, synchronize, form a team

Motion: deploy, gather, flock, reach pattern
Sensor-based: search, estimate, identify, track, map

For {S, T, CC}, define costs/complexity:

control effort, communication packets, computational cost
Time complexity to achieve T with CC

TC(T, CC , x0, w0) = inf
{
` | T(x(tk), w(tk)) = true , for all k ≥ `

}
TC(T, CC) = sup

{
TC(T, CC , x0, w0) | (x0, w0) ∈ XN ×WN

}
TC(T) = inf

{
TC(T, CC) | CC achieves T

}
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Rendezvous objective

Objective:
achieve multi-robot rendezvous; i.e. arrive at the same location of space,
while maintaining connectivity

r-disk connectivity visibility connectivity
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We have to be careful...

Blindly “getting closer” to neighboring agents might break overall connectivity
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The rendezvous task via aggregate objective functions

Coordination task formulated as function minimization

Diameter convex hull Perimeter relative convex hull
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The rendezvous task formally

Let S = ({1, . . . , n},R, Ecmm) be a uniform robotic network
The (exact) rendezvous task Trendezvous : Xn → {true, false} for S is

Trendezvous(x
[1], . . . , x[n])

=

{
true, if x[i] = x[j], for all (i, j) ∈ Ecmm(x[1], . . . , x[n]),

false, otherwise

For ε ∈ R>0, the ε-rendezvous task Tε-rendezvous : (Rd)n → {true, false} is

Tε-rendezvous(P ) = true

⇐⇒ ‖p[i] − avrg
( {

p[j] | (i, j) ∈ Ecmm(P )
})
‖2 < ε, i ∈ {1, . . . , n}
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Constraint sets for connectivity

Design constraint sets with key properties
Constraints are flexible enough so that network does not get stuck
Constraints change continuously with agents’ position

r-disk connectivity visibility connectivity
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Enforcing range-limited links – pairwise

Pairwise connectivity maintenance problem:
Given two neighbors in Gdisk(r), find a rich set of

control inputs for both agents with the property that, after moving,

both agents are again within distance r

If ‖p[i](`)− p[j](`)‖ ≤ r, and remain in ball of radius r/2 (connectivity set),
then ‖p[i](` + 1)− p[j](` + 1)‖ ≤ r
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Enforcing range-limited links – w/ all neighbors

Definition (Connectivity constraint set)

Consider a group of agents at positions P = {p[1], . . . , p[n]} ⊂ Rd. The
connectivity constraint set of agent i with respect to P is

Xdisk(p
[i], P ) =

⋂ {
Xdisk(p

[i], q) | q ∈ P \ {p[i]} s.t. ‖q − p[i]‖2 ≤ r
}

Same procedure over sparser graphs =⇒ fewer constraints:

select a graph that has same connected components

select a graph whose edges can be computed in a distributed way
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Enforcing range-limited line-of-sight links – pairwise

Given nonconvex Q ⊂ R2, contraction is Qδ = {q ∈ Q | dist(q, ∂Q) ≥ δ}

Pairwise connectivity maintenance problem:
Given two neighbors in Gvis-disk,Qδ , find a rich set of

control inputs for both agents with the property that, after moving,

both agents are again within distance r and visible to each other in Qδ

visibility region of agent i visibility pairwise constraint set
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Enforcing range-limited line-of-sight links – w/ all
neighbors

Definition (Line-of-sight connectivity constraint set)

Consider a group of agents P = {p[1], . . . , p[n]} in nonconvex Qδ. The
line-of-sight connectivity constraint sets of agent i with respect to P is

Xvis-disk(p
[i], P ;Qδ) =

⋂ {
Xvis-disk(p

[i], q;Qδ) | q ∈ P \ {p[i]}
}

Fewer constraints can be generated via sparser graphs with the same
connected components and spatially distributed
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Circumcenter control and communication law

circumcenter CC(W ) of bounded set W is center of
closed ball of minimum radius containing W

Circumradius CR(W ) is radius of this ball

[Informal description:]

At each communication round each agent:
(i) transmits its position and receives its neighbors’ positions
(ii) computes circumcenter of point set comprised of its neighbors and
of itself
(iii) moves toward this circumcenter point while remaining inside
constraint set
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Circumcenter control and communication law

Illustration of the algorithm execution
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Circumcenter control and communication law

Formal algorithm description

Robotic Network: Sdisk with a discrete-time motion model,
with absolute sensing of own position, and
with communication range r, in Rd

Distributed Algorithm: circumcenter
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: pgoal := CC({p} ∪ {prcvd | for all non-null prcvd ∈ y})
2: X := Xdisk(p, {prcvd | for all non-null prcvd ∈ y})
3: return fti(p, pgoal,X )− p
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Simulations

x

y

z

x
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Some bad news...

Circumcenter algorithms are nonlinear discrete-time dynamical systems

x`+1 = f(x`)

To analyze convergence, we need at least f continuous – to use classic
Lyapunov/LaSalle results

But circumcenter algorithms are discontinuous because of changes in
interaction topology
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Alternative idea

Fixed undirected graph G, define fixed-topology circumcenter algorithm

fG : (Rd)n → (Rd)n, fG,i(p1, . . . , pn) = fti(p, pgoal,X )− p

Now, there are no topological changes in fG, hence fG is continuous

Define set-valued map TCC : (Rd)n → P((Rd)n)

TCC(p1, . . . , pn) = {fG(p1, . . . , pn) | G connected}
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Non-deterministic dynamical systems

Given T : X → P(X), a trajectory of T is se-
quence {xm}m∈N0 ⊂ X such that

xm+1 ∈ T (xm) , m ∈ N0

T is closed at x if xm → x, ym → y with ym ∈ T (xm) imply y ∈ T (x)
Every continuous map T : Rd → Rd is closed on Rd

A set C is
weakly positively invariant if, for any p0 ∈ C, there exists p ∈ T (p0)
such that p ∈ C

strongly positively invariant if, for any p0 ∈ C, all p ∈ T (p0) verifies
p ∈ C

A point p0 is a fixed point of T if p0 ∈ T (p0)
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LaSalle Invariance Principle – set-valued maps

V : X → R is non-increasing along T on S ⊂ X if

V (x′) ≤ V (x) for all x′ ∈ T (x) and all x ∈ S

Theorem (LaSalle Invariance Principle)

For S compact and strongly invariant with V continuous and non-
increasing along closed T on S

Any trajectory starting in S converges to largest weakly invariant set
contained in {x ∈ S | ∃x′ ∈ T (x) with V (x′) = V (x)}
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Correctness
TCC is closed and diameter is non-increasing

Recall set-valued map TCC : (Rd)n → P((Rd)n)

TCC(p1, . . . , pn) = {fG(p1, . . . , pn) | G connected}

TCC is closed: finite combination of individual continuous maps
Define

Vdiam(P ) = diam(co(P )) = max {‖pi − pj‖ | i, j ∈ {1, . . . , n}}
diag((Rd)n) =

{
(p, . . . , p) ∈ (Rd)n | p ∈ Rd

}
Lemma

The function Vdiam = diam ◦ co: (Rd)n → R+ verifies:
1 Vdiam is continuous and invariant under permutations;
2 Vdiam(P ) = 0 if and only if P ∈ diag((Rd)n);
3 Vdiam is non-increasing along TCC
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Correctness via LaSalle Invariance Principle

To recap
1 TCC is closed
2 V = diam is non-increasing along TCC
3 Evolution starting from P0 is contained in co(P0) (compact and strongly

invariant)

Application of LaSalle Invariance Principle: trajectories starting at P0

converge to M , largest weakly positively invariant set contained in

{P ∈ co(P0) | ∃P ′ ∈ TCC(P ) such that diam(P ′) = diam(P )}

Have to identify M ! In fact, M = diag((Rd)n) ∩ co(P0)

Convergence to a point can be concluded with a little bit of extra work
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Correctness

Theorem (Correctness of the circumcenter laws)

For d ∈ N, r ∈ R>0 and ε ∈ R>0, the following statements hold:
1 on Sdisk, the law CCcircumcenter (with control magnitude bounds and

relaxed G-connectivity constraints) achieves Trendezvous;
2 on SLD, the law CCcircumcenter achieves Tε-rendezvous

Furthermore,
1 if any two agents belong to the same connected component at ` ∈ N0, then

they continue to belong to the same connected component subsequently;
and

2 for each evolution, there exists P ∗ = (p∗1 , . . . , p
∗
n) ∈ (Rd)n such that:

1 the evolution asymptotically approaches P ∗, and
2 for each i, j ∈ {1, . . . , n}, either p∗i = p∗j , or ‖p∗i − p∗j‖2 > r

Similar result for visibility networks in non-convex environments
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Correctness – Time complexity

Theorem (Time complexity of circumcenter laws)

For r ∈ R>0 and ε ∈ ]0, 1[, the following statements hold:
1 on the network Sdisk, evolving on the real line R (i.e., with d = 1),

TC(Trendezvous, CCcircumcenter) ∈ Θ(n);
2 on the network SLD, evolving on the real line R (i.e., with d = 1),

TC(T(rε)-rendezvous, CCcircumcenter) ∈ Θ(n2 log(nε−1)); and

Similar results for visibility networks
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Robustness of circumcenter algorithms

Push whole idea further!, e.g., for robustness against link failures

topology G1 topology G2 topology G3

Look at evolution under link failures as outcome of nondeterministic
evolution under multiple interaction topologies

P −→ {evolution under G1, evolution under G2, evolution under G3}
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Rendezvous

Corollary (Circumcenter algorithm over Gdisk(r) on Rd)

For {Pm}m∈N0 synchronous execution with link failures such that union of any
` ∈ N consecutive graphs in execution has globally reachable node

Then, there exists (p∗, . . . , p∗) ∈ diag((Rd)n) such that

Pm → (p∗, . . . , p∗) as m → +∞

Proof uses

TCC,`(P ) = {fG`
◦ · · · ◦ fG1(P ) |

∪`
s=1 Gi has globally reachable node}
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Deployment

Objective: optimal task allocation and space partitioning
optimal placement and tuning of sensors

What notion of optimality? What algorithm design?
top-down approach: define aggregate function measuring “goodness” of
deployment, then synthesize algorithm that optimizes function

bottom-up approach: synthesize “reasonable” interaction law among
agents, then analyze network behavior
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Coverage optimization

DESIGN of performance metrics
1 how to cover a region with n minimum-radius overlapping disks?
2 how to design a minimum-distortion (fixed-rate) vector quantizer?

(Lloyd ’57)
3 where to place mailboxes in a city / cache servers on the internet?

ANALYSIS of cooperative distributed behaviors

4 how do animals share territory? what
if every fish in a swarm goes toward
center of own dominance region?
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towardtheirneighbors.Fora highenoughdensity of�sh,thisreciprocalspitting
resultsinsandparapetsthatarevisibleterritorialboundaries.In[3],theresultsof
a controlledexperimentweregiven.Fishwereintroducedintoa largeoutdoorpool
witha uniformsandybottom.Afterthe�shhad establishedtheirterritories,i.e.,
afterthe�nalpositionsofthebreedingpitswereestablished,theparapetsseparating
theterritorieswerephotographed.InFigure2.2,theresultingphotographfrom[3]
isreproduced.The territoriesareseentobepolygonaland,in[27,59],itwasshown
thattheyareverycloselyapproximatedby a Voronoitessellation.

A behavioralmodelforhow the�shestablishtheirterritorieswasgiven in[22,
23,60].When the�shentera region,they�rstrandomlyselectthecentersoftheir
breedingpits,i.e.,thelocationsatwhich theywillspitsand.Theirdesiretoplacethe
pitcentersasfaraway aspossiblefromtheirneighborscausesthe�shtocontinuously
adjustthepositionofthepitcenters.Thisadjustmentprocessismodeledasfollows.
The�sh,intheirdesiretobeasfarawayaspossiblefromtheirneighbors,tendtomove
theirspittinglocationtowardthecentroidoftheircurrentterritory;subsequently,the
territorialboundariesm ustchangesincethe�sharespittingfromdi�erentlocations.
Sinceallthe�shareassumedtobe ofequalstrength,i.e.,theyallpresumablyhave

Barlow, Hexagonal territories, Animal Behav-

ior, 1974

5 what if each vehicle goes to center of mass of own Voronoi cell?
6 what if each vehicle moves away from closest vehicle?
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Voronoi partitions

Let (p1, . . . , pn) ∈ Qn denote the positions of n points

The Voronoi partition V(P ) = {V1, . . . , Vn} generated by (p1, . . . , pn)

Vi = {q ∈ Q| ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}
= Q ∩j HP(pi, pj) where HP(pi, pj) is half plane (pi, pj)

3 generators 5 generators 50 generators
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Expected-value multicenter function

Objective: Given sensors/nodes/robots/sites (p1, . . . , pn) moving in
environment Q achieve optimal coverage

φ : Rd → R≥0 density

f : R≥0 → R non-increasing and piecewise
continuously differentiable, possibly with fi-
nite jump discontinuities

maximize Hexp(p1, . . . , pn) = Eφ

[
max

i∈{1,...,n}
f(‖q − pi‖)

]
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Variety of scenarios

Alternative expression in terms of Voronoi partition,

Hexp(p1, . . . , pn) =
n∑

i=1

∫
Vi(P )

f(‖q − pi‖2)φ(q)dq

Distortion problem: f(x) = −x2 gives rise to (Jφ(W,p) is moment of inertia)

Hdist(p1, . . . , pn) = −
n∑

i=1

Jφ(Vi(P ), pi)

Area problem: f(x) = 1[0,a](x), a ∈ R>0 gives rise to

Harea,a(p1, . . . , pn) =
n∑

i=1

areaφ(Vi(P ) ∩B(pi, a))

= areaφ(∪n
i=1B(pi, a))
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Hexp-optimality of the Voronoi partition

Hexp as a function of agent positions and partition,

Hexp(p1, . . . , pn,W1, . . . ,Wn) =
n∑

i=1

∫
Wi

f(‖q − pi‖2)φ(q)dq

Proposition (For fixed positions, Voronoi is optimal)

Let P = {p1, . . . , pn} ∈ F(S). For any performance function f and for any
partition {W1, . . . ,Wn} ⊂ P(S) of S,

Hexp(p1, . . . , pn, V1(P ), . . . , Vn(P )) ≥ Hexp(p1, . . . , pn,W1, . . . ,Wn),

and the inequality is strict if any set in {W1, . . . ,Wn} differs from the
corresponding set in {V1(P ), . . . , Vn(P )} by a set of positive measure
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Distortion problem
f(x) = −x2

Using parallel axis theorem,

Hdist(p1, . . . , pn,W1, . . . ,Wn) = −
n∑

i=1

Jφ(Wi, pi)

= −
n∑

i=1

Jφ(Wi,CMφ(Wi))−
n∑

i=1

areaφ(Wi)‖pi − CMφ(Wi)‖2
2

Proposition

Let {W1, . . . ,Wn} ⊂ P(S) be a partition of S. Then,

Hdist

(
CMφ(W1), . . . ,CMφ(Wn),W1, . . . ,Wn

)
≥ Hdist(p1, . . . , pn,W1, . . . ,Wn),

and the inequality is strict if there exists i ∈ {1, . . . , n} for which Wi has
non-vanishing area and pi 6= CMφ(Wi)
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Gradient of Hexp is distributed

For f smooth

∂Hexp

∂pi
(P ) =

∫
Vi(P )

∂

∂pi
f (‖q − pi‖) φ(q)dq

+

∫
∂Vi(P )

f (‖q − pi‖) 〈ni(q),
∂q

∂pi
〉φ(q)dq

+
∑

j neigh i

∫
Vj(P )∩Vi(P )

f (‖q − pj‖) 〈nji(q),
∂q

∂pi
〉φ(q)dq︸ ︷︷ ︸

contrib from neighbors
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Gradient of Hexp is distributed

For f smooth

∂Hexp

∂pi
(P ) =

∫
Vi(P )

∂

∂pi
f (‖q − pi‖) φ(q)dq

+

∫
∂Vi(P )

f (‖q − pi‖) 〈ni(q),
∂q

∂pi
〉φ(q)dq

−
∫

∂Vi(P )

f (‖q − pi‖) 〈ni(q),
∂q

∂pi
〉φ(q)dq

Therefore,

∂Hexp

∂pi
(P ) =

∫
Vi(P )

∂

∂pi
f (‖q − pi‖) φ(q)dq
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Particular gradients

Distortion problem: continuous performance,

∂Hdist

∂pi
(P ) = 2 areaφ(Vi(P ))(CMφ(Vi(P ))− pi)

Area problem: performance has single discontinuity,

∂Harea,a

∂pi
(P ) =

∫
Vi(P )∩ ∂B(pi,a)

nout,B(pi,a)(q)φ(q)dq
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Smoothness properties of Hexp

Dscn(f) (finite) discontinuities of f
f− and f+, limiting values from the left and from the right

Theorem
Expected-value multicenter function Hexp : Sn → R is

1 globally Lipschitz on Sn; and
2 continuously differentiable on Sn \ Scoinc, where

∂Hexp

∂pi
(P ) =

∫
Vi(P )

∂

∂pi
f(‖q − pi‖2)φ(q)dq

+
∑

a∈Dscn(f)

(
f−(a)− f+(a)

) ∫
Vi(P )∩ ∂B(pi,a)

nout,B(pi,a)(q)φ(q)dq

= integral over Vi + integral along arcs in Vi

Therefore, the gradient of Hexp is spatially distributed over GD
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Geometric-center laws

Uniform networks SD and SLD of locally-connected first-order agents in a
polytope Q ⊂ Rd with the Delaunay and r-limited Delaunay graphs as
communication graphs

All laws share similar structure
At each communication round each agent performs:

it transmits its position and receives its neighbors’ positions;
it computes a notion of geometric center of its own cell
determined according to some notion of partition of the
environment

Between communication rounds, each robot moves toward this center
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Vrn-cntrd algorithm
Optimizes distortion Hdist

Robotic Network: SD in Q, with absolute sensing of own position
Distributed Algorithm: Vrn-cntrd
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: V := Q ∩
( ⋂

{Hp,prcvd | for all non-null prcvd ∈ y}
)

2: return CMφ(V )− p
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Simulation

initial configuration gradient descent final configuration

For ε ∈ R>0, the ε-distortion deployment task

Tε-distor-dply(P ) =

{
true, if

∥∥p[i] − CMφ(V [i](P ))
∥∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise,
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Voronoi-centroid law on planar vehicles

Robotic Network: Svehicles in Q with absolute sensing of own position
Distributed Algorithm: Vrn-cntrd-dynmcs
Alphabet: L = R2 ∪ {null}
function msg((p, θ), i)

1: return p

function ctrl((p, θ), (psmpld, θsmpld), y)

1: V := Q ∩
( ⋂ {

Hpsmpld,prcvd | for all non-null prcvd ∈ y
} )

2: v := −kprop(cos θ, sin θ) · (p− CMφ(V ))

3: ω := 2kprop arctan
(− sin θ, cos θ) · (p− CMφ(V ))
(cos θ, sin θ) · (p− CMφ(V ))

4: return (v, ω)
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Algorithm illustration
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Simulation

initial configuration gradient descent final configuration
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Lmtd-Vrn-nrml algorithm
Optimizes area Harea, r

2

Robotic Network: SLD in Q with absolute sensing of own position and with
communication range r

Distributed Algorithm: Lmtd-Vrn-nrml
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: V := Q ∩
( ⋂

{Hp,prcvd | for all non-null prcvd ∈ y}
)

2: v :=
∫

V ∩∂B(p, r
2 )

nout,B(p, r
2 )(q)φ(q)dq

3: λ∗ := max
{

λ | δ 7→
∫

V ∩B(p+δv, r
2 )

φ(q)dq is strictly increasing on [0, λ]
}

4: return λ∗v
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Simulation

initial configuration gradient descent final configuration

For r, ε ∈ R>0,

Tε-r-area-dply(P )

=

{
true, if

∥∥ ∫
V [i](P )∩ ∂B(p[i], r

2 )
nout,B(p[i], r

2 )(q)φ(q)dq
∥∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise.
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Correctness of the geometric-center algorithms

Theorem

For d ∈ N, r ∈ R>0 and ε ∈ R>0, the following statements hold.
1 on the network SD, the law CCVrn-cntrd achieves the ε-distortion

deployment task Tε-distor-dply. Moreover, any execution monotonically
optimizes Hdist

2 on the network Svehicles, the law CCVrn-cntrd-dynmcs achieves the
ε-distortion deployment task Tε-distor-dply. Moreover, any execution
monotonically optimizes Hdist

3 on the network SLD, the law CCLmtd-Vrn-nrml achieves the ε-r-area
deployment task Tε-r-area-dply. Moreover, any execution monotonically
optimizes Harea, r

2
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Time complexity of CCLmtd-Vrn-cntrd

Assume diam(Q) is independent of n, r and ε

Theorem (Time complexity of Lmtd-Vrn-cntrd law)

Assume the robots evolve in a closed interval Q ⊂ R, that is, d = 1, and
assume that the density is uniform, that is, φ ≡ 1. For r ∈ R>0 and ε ∈ R>0,
on the network SLD

TC(Tε-r-distor-area-dply, CCLmtd-Vrn-cntrd) ∈ O(n3 log(nε−1))

Open problem: characterize complexity of deployment algorithms in higher
dimensions
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Deployment: basic behaviors

“move away from closest” “move towards furthest”

Equilibria? Asymptotic behavior?
Optimizing network-wide function?
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Deployment: 1-center optimization problems

smQ(p) = min{‖p− q‖ | q ∈ ∂Q} Lipschitz 0 ∈ ∂ smQ(p) ⇔ p ∈ IC(Q)
lgQ(p) = max{‖p− q‖ | q ∈ ∂Q} Lipschitz 0 ∈ ∂ lgQ(p) ⇔ p = CC(Q)

Locally Lipschitz function V are differentiable a.e.
Generalized gradient of V is

∂V (x) = convex closure
˘

lim
i→∞

∇V (xi) | xi → x , xi 6∈ ΩV ∪ S
¯
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Deployment: 1-center optimization problems

+ gradient flow of smQ ṗi = +Ln[∂ smQ](p) “move away from closest”
− gradient flow of lgQ ṗi = − Ln[∂ lgQ](p) “move toward furthest”

For X essentially locally bounded, Filippov solution of ẋ = X(x) is
absolutely continuous function t ∈ [t0, t1] 7→ x(t) verifying

ẋ ∈ K[X](x) = co{ lim
i→∞

X(xi) | xi → x , xi 6∈ S}

For V locally Lipschitz, gradient flow is ẋ = Ln[∂V ](x)
Ln = least norm operator
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Nonsmooth LaSalle Invariance Principle

Evolution of V along Filippov solution t 7→ V (x(t)) is differentiable a.e.

d
dt

V (x(t)) ∈ L̃XV (x(t)) = {a ∈ R | ∃v ∈ K[X](x) s.t. ζ · v = a , ∀ζ ∈ ∂V (x)}︸ ︷︷ ︸
set-valued Lie derivative

LaSalle Invariance Principle

For S compact and strongly invariant with max L̃XV (x) ≤ 0

Any Filippov solution starting in S converges to largest weakly

invariant set contained in
{

x ∈ S | 0 ∈ L̃XV (x)
}

E.g., nonsmooth gradient flow ẋ = − Ln[∂V ](x) converges to critical set
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Deployment: multi-center optimization
sphere packing and disk covering

“move away from closest”: ṗi = +Ln(∂ smVi(P ))(pi) — at fixed Vi(P )
“move towards furthest”: ṗi = − Ln(∂ lgVi(P ))(pi) — at fixed Vi(P )

Aggregate objective functions!

Hsp(P ) = min
i

smVi(P )(pi) = min
i 6=j

[
1
2‖pi − pj‖, dist(pi, ∂Q)

]
Hdc(P ) = max

i
lgVi(P )(pi) = max

q∈Q

[
min

i
‖q − pi‖

]
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Deployment: multi-center optimization

Critical points of Hsp and Hdc (locally Lipschitz)
If 0 ∈ int ∂Hsp(P ), then P is strict local maximum, all agents have same
cost, and P is incenter Voronoi configuration

If 0 ∈ int ∂Hdc(P ), then P is strict local minimum, all agents have same
cost, and P is circumcenter Voronoi configuration

Aggregate functions monotonically optimized along evolution

min L̃Ln(∂ smV(P ))Hsp(P ) ≥ 0 max L̃− Ln(∂ lgV(P ))
Hdc(P ) ≤ 0

Asymptotic convergence via nonsmooth LaSalle principle
Convergence to configurations where all agents whose local cost coincides
with aggregate cost are centered
Convergence to center Voronoi configurations still open
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Voronoi-circumcenter algorithm

Robotic Network: SD in Q with absolute sensing of own position
Distributed Algorithm: Vrn-crcmcntr
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: V := Q ∩
( ⋂

{Hp,prcvd | for all non-null prcvd ∈ y}
)

2: return CC(V )− p
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Voronoi-incenter algorithm

Robotic Network: SD in Q with absolute sensing of own position
Distributed Algorithm: Vrn-ncntr
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: V := Q ∩
( ⋂

{Hp,prcvd | for all non-null prcvd ∈ y}
)

2: return x ∈ IC(V )− p
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Correctness of the geometric-center algorithms

For ε ∈ R>0, the ε-disk-covering deployment task

Tε-dc-dply(P ) =

{
true, if ‖p[i] − CC(V [i](P ))‖2 ≤ ε, i ∈ {1, . . . , n},
false, otherwise,

For ε ∈ R>0, the ε-sphere-packing deployment task

Tε-sp-dply(P ) =

{
true, if dist2(p

[i], IC(V [i](P ))) ≤ ε, i ∈ {1, . . . , n},
false, otherwise,

Theorem

For d ∈ N, r ∈ R>0 and ε ∈ R>0, the following statements hold.
1 on the network SD, any execution of the law CCVrn-crcmcntr monotonically

optimizes the multicenter function Hdc;
2 on the network SD, any execution of the law CCVrn-ncntr monotonically

optimizes the multicenter function Hsp.
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Synchronized boundary patrolling

Joint work with Sara Susca (Honeywell)
and Sonia Mart́ınez (UCSD)

1 some UAVs move along boundary of sensitive territory
2 short-range communication and sensing
3 surveillance objective:

minimize service time for appearing events
communication network connectivity

Example motion:

joint work with: Susca, Mart́ınezBullo & Cortés (UCSB/UCSD) Distributed Coordination Algorithms May 17, 2009 79 / 97

Analogy with mechanics and dynamics

1 robots with “communication impacts” analogous to beads on a ring
2 classic subject in dynamical systems and geometric mechanics

billiards, iterated impact dynamics, gas theory of hard spheres
3 rich dynamics with even just 3 beads (distinct masses, elastic collisions)

dynamics akin billiard flow inside acute triangle
dense periodic and nonperiodic modes, chaotic collision sequences
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Boundary patrolling: synchronized bead oscillation

Desired synchronized behavior:
starting from random initial
positions and velocities
every bead impacts its
neighbor at the same point
simultaneous impacts
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Design specification for synchronization algorithm

Achieve: asymptotically stabilize synchronized motion
Subject to:

1 arbitrary initial positions, velocities and directions of motion
2 beads can measure traveled distance, however

no absolute localization capability, no knowledge of circle length
3 no knowledge about n, adaptation to changing n (even and odd)
4 anynomous agents with memory and message sizes independent of n

5 smooth dependency upon effect of measurement and control noise
Fully-adaptive feedback synchronization
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Slowdown-Impact-Speedup algorithm

Algorithm: (for presentation’s sake, beads sense their position)

1st phase: compute average speed v and desired sweeping arcs

2nd phase for f ∈ ] 1
2 , 1[, each bead:

moves at nominal speed v if inside its desired sweeping arc
slows down (fv) when moving away of its sweeping arc

hesitate when early
when impact, change direction
speeds up when moving towards its desired sweeping arc
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Simulations results: balanced synchronization

Balanced initial condition:
n is even
di is direction of motion∑n

i di(0) =
∑n

i di(t) = 0

n/2 move initially
clockwise
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First phase: average speed and sweeping arc

If an impact between bead i and i + 1 occurs:
beads average nominal speeds: v+

i = v+
i+1 = 0.5(vi + vi+1)

beads change their direction of motion if di = −di+1 (head-head type)
beads update their desired sweeping arc

Ci+1

Ci

exponential average consensus
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Challenges

1 how to prove balanced synchronization?
2 what happens for unbalanced initial conditions

∑n
i di(0) 6= 0?

3 what happens for n is odd?

4 how to describe the system with a single variable?
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Modeling detour

configuration space
1 order-preserving dynamics θi ∈ Arc(θi−1, θi+1) on Tn

2 ∆n × {c, cc}n × (R>0)
n × (arcs)n × {away, towards}n

d1

d2

d3

hybrid system with
1 piecewise constant dynamics
2 event-triggered jumps: impact, cross boundary
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Passage and return times

passage time: tki = kth time when bead i passes by sweeping arc center

return time: δi(t) = duration between last two passage times

if impact between beads (i, i + 1) at time t, then[
δi

δi+1

]
(t+) =

[
1−f
1+f

2f
1+f

2f
1+f

1−f
1+f

]
︸ ︷︷ ︸

stochastic

[
δi

δi+1

]
(t−)
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Averaging algorithms

Distributed averaging algorithm or consensus algorithms

x(` + 1) = Ax(`)

with (row) stochastic matrix A:
∑n

j=1 aij = 1 and aij ≥ 0

let G(A) be unweighted matrix associated to A

a sequence of stochastic {A(`)}`∈N is non-degenerate if ∃α > 0 s.t.
aii(`) ≥ α and aij(`) ∈ {0} ∪ [α, 1], for all i 6= j

Theorem (Convergence to average consensus)

Let {A(`)}`∈N be a non-degenerate sequence of stochastic, symmetric matrices
1 each evolution x converges to average(x(0))1n

2 for all ` ∈ N, the graph
⋃

τ≥` G(A(τ)) is connected
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Convergence results: balanced synchronization

Balanced Synchronization Theorem: For balanced initial directions, assume
1 exact average speed and desired sweeping arcs
2 initial conditions lead to well-defined 1st passage times

Then balanced synchronization is asymptotically stable

lim
t→∞

δ(t) =
2π

Nv
1n, lim

k→+∞

∥∥T k − 1n · T k

n
1n

∥∥ = 0
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Conjectures arising from simulation results

Only assumption required is balanced initial conditions.

1 analysis of cascade consensus algorithms

consensus on v

consensus on
desired sweeping arc

synchronization:

consensus on T k
i

2 global attractivity of synchronous behavior
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Simulations results: 1-unbalanced case

1-unbalanced initial condition:
n is odd∑n

i di(0) =
∑n

i di(t) = ±1
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1-unbalanced synchronization

1 f ∈ ] 1
2 , n

1+n [

2 1-unbalanced sync: beads meet at arcs boundaries ±2π

n2

f

1− f

1-unbalanced Synchronization Theorem: For
∑n

i di(0) = ±1, assume
1 exact average speed and desired sweeping arcs
2 initial conditions lead to well-defined 1st passage times

Then 1-unbalanced synchronization is asymptotically stable

lim
t→∞

δ(t) =
2π

Nv
1n, lim

k→+∞

(
T 2k − T 2(k−1)

)
=

2

v

2π

n
1n
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General unbalanced case

Conjecture global asy-synchronization in the balanced and unbalanced case

D-unbalanced period orbits Theorem:
Let

∑n
i di(0) = ±D. If there exists an orbit along which beads i and i + 1

meet at boundary ±2π

n2

f

1− f
, then f <

n/|D|
1 + n/|D|

.
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Summary and conclusions

Examined various motion coordination tasks
1 rendezvous: circumcenter algorithms
2 connectivity maintenance: flexible constraint sets in

convex/nonconvex scenarios
3 deployment: gradient algorithms based on geometric centers
4 beads problem: robotic patrolling via synchronization

Correctness and (1-d) complexity analysis of geometric-center control
and communication laws via

1 Discrete- and continuous-time nondeterministic dynamical systems
2 Invariance principles, stability analysis
3 Geometric structures and geometric optimization

Plenty of open problems!
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Motion coordination is emerging discipline

Literature is full of exciting problems, solutions, and tools we have not covered
Formation control, consensus, cohesiveness, flocking, collective
synchronization, boundary estimation, cooperative control over
constant graphs, quantization, asynchronism, delays, distributed
estimation, spatial estimation, data fusion, target tracking, networks
with minimal capabilities, target assignment, vehicle dynamics and
energy-constrained motion, vehicle routing, dynamic servicing
problems, load balancing, robotic implementations,...

Too long a list to fit it here!
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