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What kind of
Groups of agents

with control, sensing, communication and computing
Each individual

o senses its immediate environment

o communicates with others

o processes information gathered

e takes local action in response

Able to

@ deploy over a given region

o assume specified pattern
o rendezvous at a common point

o jointly initiate motion/change direction in a
synchronized way

Species achieve synchronized behavior
o with limited sensing/communication between individuals

o without apparently following group leader

(Couzin et al, Nature 05; Conradt et al, Nature 03)




Embedded robotic systems and sensor networks for X : .
Y What useful engineering tasks can be performed

@ high-stress, rapid deployment — e.g., disaster recovery networks o . o .
with limited-sensing/communication agents?

e distributed environmental monitoring — e.g., portable chemical and

biological sensor arrays detecting toxic pollutants Dy papaics simple interactions give rise to
o aut us ling for biological applications — e.g., monitoring of rich emerging behavior .
species in risk, validation of climate and oceanographic models Feedback rather than open-loop computation
for known /static setup
e science imaging — e.g., multispacecraft distributed interferometers flying Information flow who knows what, when, why, how,
in formation to enable imaging at microarcsecond resolution dynamically changing

Reliability /performance  robust, efficient, predictable behavior

How to coordinate individual agents into coherent whole?

systematic methodologies to design and analyze
perative strategies to control multi-agent systems

Sandin National Labs  UCSD Scripp: MBARI AOSN NASA

Optimization Methods Geometry & Analy

o resource allocation o computational structures
Design of provably correct coordination algo-
rithms for basic tasks

o geometric optimization differential geometry

o load balancing nonsmooth analysis
Formal model to rigorously formalize, analyze,

and compare coordination algorithms

Control & Robotics Distributed Algorithms
Mathematical tools to study convergence, st o algorithm design o adhoc networks
bility, and robustness of coordination algorithms ) ) -

o cooperative control o decentralized vs centralized

o stabi!

y theory o emerging behaviors

Coordination tasks
exploration, map building, search and rescue,
surveillance, odor localization, monitoring, distributed sensing




Basic motion coordination tasks:
get together at a point, stay connected, deploy over a region

Design coordination algorithms that achieve these
tasks and analyze their correctness and time complexity

Expand set of math tools: invariance principles for
non-deterministic systems, geometric optimization, non-

smooth stability analysis

Robustness against link failures, agents’ arrivals and de-
partures, delays, asynchronism

Image credits: jupiterimages and Animal Behavior

@ Models for multi-agent networks

@ Rendezvous and connectivity maintenance
© Maintaining connectivity
o Circumcenter algorithms

o Correctness analysis via nondeterministic systems

@© Deployment

o Expected-value deployment
o Geometric-center laws
o Disk-covering and sphere-packing deployment

@ Synchronized boundary patrolling

o Balanced synchronization

o Unbalanced synchronization

“onclusions

intro to distributed algorithms
(graph theory, synchronous networks,

Distributed Control .
and averaging algos)

of Robotic Networks

At @ zeometric models and geometric
optimization problems
@ model for robotic, relative sensing
networks, and complexity
@ algorithms for rendezvous, deployment,

boundary estimation
é z O
Francesco Bullo

Jorge Cortés.
Sonia Martinez

Status: Freely downloadable at

with tutorial slides & software libraries.
Shortly on sale by Princeton Univ Press
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Objective
@ meaningful + tractable model
@ feasible operations and their cost

@ control/communication tradeoffs




A uniform/anonymous robotic network S is
@ I={1,...,N}; set of unique identifiers (UIDs)
@ A= {All},c;, with Al = (X,U, f) is a set of physical agents

@ interaction graph

Disk, visibility and Delauney graphs

Locally-connected first-order robots in R Syigk
o n points 211, ... 2l in R d > 1
o obeying #l1(t) = ulil(t), with ul?! € [~umax, tmax]

o identical robots of the form
(R, [~ tumax, umax], R, (0, €1, €4))

e each robot communicates to other robots within r

Variations
@ Sp same dynamics, but Delaunay graph
@ Sup: same dynamics, but r-limited Delaunay graph

Q Suehiclest

same graph, but nonholonomic dynamics

& JE, L <
- J15 L -

Relevant graphs

fixed, directed, balanced
switching

geometric or state-dependent

random, random geometric

communication schedule
communication alphabet

Message model
Q@ message
@ packet /bits
@ absolute or relative positions
@ packet losses

T = {tc}een, C Rxo
L including the null message

set of values for logic variables w

message-gener

state-tr:
control function

Transmit
and

ration function

sition functions

msg: Tx X xWxI—1L
stf: Tx W x LV — W
ctrl: Rog x X x W x LN — U

Update
processor




d: achieve consensus, synchronize, form a team
: deploy, gather, flock, reach pattern
Sensor-based: search, estimate, identi

y, track, map

o For {8, 7,CC}, define costs/complexi

control effort, communication packets, computational cost
e Time complexity to achieve T with CC
TC(T,CC, w0, wo) = inf {¢| T(a(tx), w(tr)) = true, for all k > ¢}
TC(T.CC) = sup { TC(Z,CC, a0, wo) | (z0.wo) € XN x WV}
TC(7) = inf { TC(7,CC) | CC achieves T}

Object
achieve multi-robot rendezvous; i.e. arrive at the same location of space,
while maintaining connectivity

ive:

r-disk connectivity visibility connectivity

@ Models for multi-agent networks

© Rendezvous and connectivity maintenance
o Maintaining connectivity
o Circumcenter algorithms

o Correctness analysis via nondeterministic systems

@ Deployment
o Expected-value deployment
o Geometric-center laws

o Disk-covering and sphere-packing deployment

@ Synchronized boundary patrolling
o Balanced synchronization

o Unbalanced synchronization

@ Conclusions

.
‘s o®

Blindly “getting closer” to neighboring agents might break overall connectivity




Coordination task formulated as function minimization

Diameter convex hull Perimeter relative convex hull

@ Models for multi-agent networks

@ Rendezvous and connectivity maintenance
o Maintaining connectivity
o Circumcenter algorithms

o Correctness analysis via nondeterministic systems

@© Deployment
» Expected-value deployment
o Geometric-center laws

o Disk-covering and sphere-packing deployment

ynchronized boundary patrolling
e Balanced synchronization

o Unbalanced synchronization

“onclusions

Let 8 = ({1,...,n}, R, Benm) be a uniform robotic network
The (exact) rendezvous task Trendervous: X — {true, false} for S is
el

Trendeavous

true, if 2l = 2l for all (i, j) € Eomm(aV, ..., al"),
false, otherwise

For ¢ € Roo, the c-rendezvous task T,-rendesvou: (BY)" — {true, false} is
T-rendesvous(P) = true

= I~ avg ({9 (1.9) € Benn(P)} )2 < 0 i € {1, oom)

Design constraint sets with key properties
@ Constraints are flexible enough so that network does not get stuck

@ Constraints change continuously with agents’ position

r-disk connectivity visibility connectivity




Pairwise connectivity maintenance problem:
Given two neighbors in Gaiwi(r), find a rich set of

control inputs for both agents with the property that, after moving,
both agents are again within distance

£ [pt(e) = pUI(e) | <

-, and remain in ball of radius r/2 (connectivity set
then [[pl1(¢ + 1) — pbl(¢ + 1)

Given nonconvex @ C R?, contraction is

={g€ Q]| dist(q.0Q) > 6}
Pairwise connectivity maintenance problem:
Given two neighbors in Guiv.dick @, find a rich set of
control inputs for both agents with the property that, after moving,
both agents are again within distance r and visible to cach other in Qs

visibility region of agent i visibility pairwise constraint set

)
|

<r

Definition (Connectivity constraint set)

Consider a group of agents at positions P = {pl!l,... pl"l} ¢ R%. The
connectivity constraint set of agent ¢ with respect to P is

= () { X (2,

Kaisk(pH, P)

a)lg€ P\{p} sit. [lg—pt), <r}

Same procedure over sparser graphs = fewer constraints:
select a graph that has same connected components

select a graph whose edges can be computed in a distributed way

Definition (Line-of-sight connectivity constraint se

Consider a group of agents P = {p[‘]. e

s p[“]} in nonconvex Qs. The
line-of-sight connectivi

aint sets of agent i with respect to P is

y cons

Xoiaioe (P, P Q) = m {Xeicain(P, 4: Q5) | g € P\ {p1}}

Fewer constraints can be generated via sparser graphs with the same
connected components and spatially distributed




@ Models for multi-agent networks

© Rendezvous and connectivity maintenance
o Maintaining connectivity
e Circumcenter algorithms
@ Correctness analysis via nondeterministic systems Circumradius CR(W) is radius of this ball

circumeenter CC(W) of bounded set W is center of
closed ball of minimum radius containing W

@ Deployment
o Expected-value deployment
o Geometric-center laws Informal description
@ Disk-covering and sphere-packing deployment

At each communication round cach agent:
(i) transmits its position and receives its neighbors’ positions
(ii) computes circumcenter of point set comprised of its neighbors and

@ Synchronized boundary patrolling

@ Balanced synchronization

o Unbalanced synchronization of itself
(iii) moves toward this ¢ point while inside
@ Conclusions constraint set
Tlustration of the algorithm execution

Formal algorithm description

Robotic Network: Sy with a discrete-time motion model,
with absolute sensing of own position, and

with communication range r, in R?
Distributed Algorithm: circumcenter
Alphabet: L =R%U {null}
function msg(p, i)

1: return p

function ctrl(p, y)
1: Pgoal := CC({p} U {preva | for all non-null prcva € y})
2 X = gy (p: {preva | for all non-null preva € y})
3: return fti(p. pgoar. X') — p




Circumcenter algorithms are nonlinear discrete-time dynamical systems
o1 = fle)

To analyze convergence, we need at least f continuous — to use classic
Lyapunov/LaSalle results

But circumcenter algorithms are discontinuous because of changes in
interaction topology

@ Models for multi-agent networks

© Rendezvous and connectivity maintenance

o Maintaining connectivity
o Circumcenter algorithms
@ Correctness analysi

@ Deployment

o Expected-value deployment

o Geometric-center la

via nondeterministic systems

o Disk-covering and sphere-packing deployment

@ Synchronized boundary patrolling

@ Balanced synchronization

o Unbalanced synchronization

@ Conclusions

Fixed undirected graph G, define fixed-topology ¢

fa

RY" — (RY)",

mcenter algorithm

fei(p1s- s pn) = fti(p, Pgoar, X) —p

Now, there are no topological changes in f¢, hence fg is continuous

Define set-valued map Tee : (RY)" — P((R)")

Tee(pr, -

) ={fa(pr. .-

pn) | G connected}




Given T : X — P(X), a trajectory of T is se-
quence {&, men, C X such that

Tmi1 € T(xm), meNo

Tis closed at a if @, — T, Yy — y With gy, € T(2,,) imply y € T(x)
Every continuous map 7': R? — R? is closed on R?
A set Cis
o weakly positively invariant if, for any po € C, there exists p € T(po)
such that p € ¢
o strongly positively invariant if, for any po € C, all p € T(po) verifies
peC
A point po is a fized point of T if po € T(po)

Recall set-valued map Tee : (RY)" — P((R?)")

2n) ={fa(p1,

Tee(pr, - +.Pn) | G connected}

Tee is closed: finite combination of individual continuous maps
Define

Viiam(P) = diam(co(P)) = max {[p; — pjl | i,j € {1,....n}}
diag((R*)") = {(p..--.p) € (RY)" [ p € R}

The function Vaiam = diamoco: (RY)" — R, verifies:

Q@ Viiam is continuous and invariant under permutations;
© Viium(P) = 0 if and only if P € diag((R")");

@ Vaiam is non-increasing along Tec

V: X — R is non-increasing along 7 on S C X if

V(2') < V() for all 2’ € T(z) and all € §

Theorem (LaSalle Invariance Principle)

For S compact and strongly invariant with V. continuous and non-
increasing along closed T on S

Any trajectory starting in S converges to largest weakly invariant set
contained in {z € S | ' € T(x) with V(z') = V(z)}

To recap
@ Tec is closed
@ V = diam is non-increasing along Tec
@ Evolution starting from Py is contained in co(Fp) (compact and strongly
invariant)

Application of LaSalle Invariance Principle: trajectories starting at Py
converge to M, largest weakly positively invariant set contained in

{P € co(Py) | IP' € Tee(P) such that diam(P’) = diam(P)}

Have to identify M! In fact, M = diag((R%)") N co(Py)
Convergence to a point can be concluded with a little bit of extra work




Theorem (Time complexity of circumcenter laws)

Ford €N, r € Rsg and ¢ € Rsg, the following statements hold:

Forr € Rog and ¢ € ]0,1[, the following statements hold:

Q@ on Saisk, the law fF (with control mag de bounds and
relazed G ti ) b T . Q@ on the network Sqisk, evolving on the real line R (i.c., with d = 1),
@ on Sip, the law CC, e T TC(Trendezvous; CCeircumeenter) € ©(n);
l“u‘r‘thﬁl"ﬂbuﬂ; @ on the network Sip, evolving on the real line R (i.e., withd =1),

TC(Tire)-rendenvonss Cleircumcenter) € ©(n? log(ne1)); and

@ if any two agents belong to the same connec Led component al le Nu, then

they continue to belong to the same
and 4'

@ for cach evolution, there exists P* = (p},...,p}) € (RY)" such that: R
)

@ the evolution asymptotically approaches P*, and

© for eachi,j € {1,...,n}, cither pi = pi, or ||pt — pill2 > 7 4'
Similar results for visibility networks

Similar result for visibility networks in non-convex environments

Push whole idea further!, e.g., for robustness against link failures

(Circumecenter algorithm over G,

isk(r) on RY)

For {Py,}men, synchronous execution with link failures such that union of any
£ €N consecutive graphs in execution has globally reachable node

‘ Then, there exists (p*,...,p*) € diag((R?)") such that

Corollary

Po— (0,..p") a5 m— +oo

topology Gy topology G topology G
Proof uses
Look at evolution under link failures as outcome of nondeterministic TeedP) = fa, 00 fa(P) |

evolution under multiple interaction topologies ;
UL, Gy has globally reachable node}

P — {evolution under Gy, evolution under Gs, evolution under G'3}




@ Models for multi-agent networks Objective: optimal task allocation and space partitioning

) optimal placement and tuning of sensors
© Rendezvous and connectivity maintenance

o Maintaining connectivity
o Circumcenter algorithms
@ Correctness analysis via nondeterministic systems

© Deployment
o Expected-value deployment
o Geometric-center laws
@ Disk-covering and sphere-packing deployment,

‘What notion of optimality? What algorithm design?

@ Synchronized boundary patrolling e top-down approach: define aggregate function measuring “goodness” of
o Balanced synchronization deployment, then synthesize algorithm that optimizes function
@ Unbalanced synchronization
o bottom-up approach: synthesize “reasonable” interaction law among
@ Conclusions agents, then analyze network behavior

n .
DESIGN of performance metrics Let (p1,-..,pa) € Q" denote the positions of n points

@ how to cover a region with n minimum-radius overlapping dis

The Voronoi partition V(P) = {Vi,...,V,} generated by (p1,...,pn)
@ how to design a minimum-distortion (fixed-rate) vector quantizer?
(Lloyd '57) Vi={a€Ql la—pill <llg—psll, Vi #1i}

@ where to place mailboxes in a city / cache servers on the internet? = QN HP(pi,p;)  where HP(p;,p;) is half plane (pi, p;)

ANALYSIS of cooperative dlatrlbuted behaviors
-

@ how do animals share territory? what
if every fish in a swarm goes toward
center of own dominance region?

Anémal Beha

ior, 1974

@ what if each vehicle goes to center of mass of own Voronoi cell?

/ \ I
3 generators 5 generators 50 generators

@ what if each vehicle moves away from closest vehicle?




Alternative expression in terms of Voronoi partition,
Objective: Given sensors/nodes/robots/sites (py,...,p,) moving in

environment @ achieve optimal coverage Hopprs s ) Z / ( Flq = pilla)él)da
Vi(P)

6: RY = Ry density

Distortion problem: f(x) = —a? gives rise to (J5(W, p) is moment of inertia)

== Ja(Vi(P).pi)

Area problem: f(2) = 1jg,4j(x), a € Rag gives rise to

f: Rsp — R non-incr

continuously differentiable, possibly it o
nite jump discontinuities

Haise (1. -

maxinize Hop(pr,.pn) = Fo | _max (g = pl) Harea,a(P1: - ->Pn) Zareaw (P)NB(ps,a))
ie

- area¢,(u,:1f3(p,. )

Hexp as a function of agent positions and partition, Using-parallel axis theorem,

n i
Hop(Prs oo pus Wase o W) = 3 / F(la - pill)é(a)da Hast(pr. o W Wa) = = 7 Jo(Wi i)
= Jw i=1

Proposition (For fixed positions, Voronoi is optimal)

Let P = {p1,.
partition {Wy

Pu} € B(S). For any performance function f and for any
W} CP(S) of S.

Let {W1,...,W,} C P(S) be a partition of S. Then,

Hexp(Prs 3P Vi(P), - Va(P)) 2 Hexp(p1s - sy Wiy o, W), Haine (CMy (W), ..., CMg(W,.), Wi, ..., W)

and the inequality is strict if any set in {Wi,..., Wy} differs from the > Haist(P1s -« s Py Wiy oo, W),

e t A broon VA 2 it cas
ATt 6 5 WA pooo VallP)) Uy @ 0 off posttine e and the inequality is strict if there exists i € {1,...,n} for which W; has

non-vanishing area and p; # CMy(W;)




For f smooth

S
T ey= [ gt =i s

op,
[ illa=pl) o). 5hyela)a

+ q— pil) (ni(a), 7= )d(q)dq

oy 2): 5, 9(0)da

3 0
i U e o

jmeigh iV

contrib from neighbors

Distortion problem: continuous performance,

M4 ,
()p‘"‘ (P) = 2areay (Vi(P))(CMy(Vi(P)) — pi)
Area problem: performance has single discontinuity,

OHare:
o Nout Bpi,a) (D O(2)dq

B »/L",(P)naﬁ(p,,n)

/

-

\ .

For f smooth

J .
a.r (llg = pill) ¢(a)dq

e[ e o). —r«»(qwq
avi(P)

[ 1= pl) ). —w(qu
Vi (P)

Therefore,

Moy / [ B
Tt = [ g U= pi) élarda

Dscn(f) (finite) discontinuities of f
Jf- and fy, limiting values from the left and from the right

I
Eapected-value multicenter function Hexp: S™ — R is
Q globally Lipschitz on S™; and
@ continuously differentiable on S™ \ Scoinc, where

OHexp
TP = [ gped =)o)

+ Y (-@-f@) /V e o T (D

a€Dsen(f)
tegral along arc:

= integral over Vi + i

Therefore, the gradient of Hexy is spatially distributed over Gp

inV;




@ Models for multi-agent networks

@ Rendezvous and connectivity maintenance

o Maintaining connectivity
o Circumcenter algorithms
@ Correctness analysis via nondeterministic systems

© Deployment

o Expected-value deployment
o Geometric-center laws
o Disk-covering and sphere-packing deployment

@ Synchronized boundary patrolling
e Balanced synchronization

@ Unbalanced synchronization

@ Conclusions

Robotic Network: Sp in @, with absolute sensing of own position
Distributed Algorithm: VRN-CNTRD
Alphabet: L = R?U {null}
function msg(p, i)
1: return p
function ctrl(p. y)

1V = QN (N {Hyppyes | for all non-null preva € y})
2: return CMy (V) —p

Uniform networks Sp and Sgp of locally-connected first-order agents in a
polytope @ C R with the Delaunay and r-limited Delaunay graphs as
communication graphs

All laws share similar structure
At each communication round each agent performs:

o it transmits its position and

o it computes a notion of geometric

s i

neighbors’ positions;
enter of its own cell
determined according to some notion of partition of the
environment

Between communication rounds, each robot moves toward this center

initial configuration gradient descent final configuration

For € € Rug, the e-distortion deployment task

true, if [[pl — CMy(VII(P))|, <€ i€ {1,...
false, otherwise,

Te-distor-dply (P) = {




Robotic Network: Syenicles in @ with absolute sensing of own position
Distributed Algorithm: VRN-CNTRD-DYNMCS
Alphabet: L = R?U {null}
function msg((p, 0), 1)
1: return p
function ctrl((p. 0), (Psmpid: smpia). y)

1V = QN (N {Hpupra prea | for all non-null preva € y})

2 0= —kprop(cos b, sinf) - (p — CMy(V))

(=sin8, cosb) - (p — CMy4(V)
cosf, sinf) - (p—CM

3 w = 2kpp arctan

I3

return (v, w)

initial configuration

gradient descent final configuration

Robotic Network: Spp in @ with absolute sensing of own position and with
communication range r
Distributed Algorithm: LMTD-VRN-NRML
Alphabet: L = R?U {null}
function msg(p, i)
1: return p
function ctrl(p,y)
1: V= QN (N{Hpprews | for all non-null preva € y})
= (9)é(a)dq
3 A, == max {)\ 15 JyriBp ooy ©(a)da s strictly increasing on [0, A]}
4: return \.v

.(woﬂ(p.%) Nout B(y




initial configuration

gradient descent final configuration
For r,e € Rog,
Teer-area-dply(P)

true,
false, otherwise.

Assume diam(Q) is independent of n, r and €

Theorem (Time complexi

y of LMTD-VRN-CNTRD law)
Assume the robots evolve in a closed interval Q C R, that is, d =1, and

assume that the density is uniform, that is, ¢ = 1. Forr € Rso and € € Ry,
on the network Spp

TC(Zeer-distor-area-dply: CCLmp-Vrx-cmn) € O(n* log(ne™))

| fypy namoi 2) Mou i, 5)(D)0(@)da|, < € i € {1, n}.

Open problem: characterize complexity of deployment algorithms in higher
dimensions

Ford e N, r € Rog and € € Rxo, the following statements hold.
Q@ on the network Sp, the law CCypyx.cxtrop achieves the e-distortion

task Te_gistor-dply- M
optimizes Hais

y any

@ on the network Syehicles: the law CCygy-cntrp-pyaues achieves the
e-distortion depl task Te-aistor-apty- Moreover, any
monotonically optimizes Haist

@ on the network Syp, the law CCryrp-vin-xmur achieves the e-r-area
deployment task Te,-arca-dply- Moreover, any execution monotonically

optimizes Harea,z

@ Models for multi-agent networks

@ Rendezvous and connectivity maintenance
o Maintaining connectivity
o Circumcenter algorithms

e Correctness analysis via nondeterministic systems

© Deployment

o Expected-value deployment

@ Geometric-center

@ Disk-covering and sphere-packing deployment

@ Synchronis

@ Balanced synchronization

d boundary patrolling

@ Unbalanced synchronization

@ Conclusions




“move away from closest” “move towards furthest”

Equilibria? Asymptotic behavior?
Optimizing network-wide function?

-+ gradient flow of smg
— gradient flow of Ig,,

Pi = +Ln[@smol(p)  “move a
pi=—Ln[0lgol(p)  “move toward furthest

For X essentially locally bounded, Filippov solution of & = X(z) is
absolutely continuous function ¢ € [to, t2] — #(t) verifying

i € K[X](x) = cof lim X(a:) | s — o, zi ¢ S}

For V locally Lipschitz, gradient flow is & = Ln[9V](x)
Ln = least norm operator

smg(

=min{[[p—qll|¢ € dQ} Lipschitz
Igo(p) = max{|lp— gl |¢ € 9Q}  Lipschitz

0e€dsmq(p) < pell(Q)
0€ dlgg(p) & p=CC(Q)

Locally Lipschitz function V' are differentiable a.e.
Generalized gradient of V' is

9V () = convex closure{ lim VV(z;) | @ =z, x; ¢ Qv U S}

Evolution of V along Filippov solution ¢ — V(x(t)) is differentiable a.e.

d

TV 60) € ExV(a(®) = {a € B| v € K[X](@) sit. ¢ v = a, ¥ € V()

set-valued Lie derivative

LaSalle Invariance Principle
For S compact and strongly invariant with max £xV(z) < 0
Any Filippov solution starting in S converges to largest weakly

invariant set contained in {:L c§l0elx v(f)}

E.g., nonsmooth gradient flow & = — Ln[0V](x) converges to critical set




+Ln(@smy;(p))(pi)
= Ln(0lgy;(p))(pi)

at fixed V;(P)

“move towards furthest”: at fixed V;(P)

Aggregate objective functions!

Hep(P) = min smy

) = min [3llpi = p;l. dist(pi. 0Q)]

Hae(P) = gy (o (pi) = inllg — pi
1c(P) = max lgy,p)(pi) = max [min llg - pil]

Robotic Network: Sp in @ with absolute sensing of own position
Distributed Algorithm: VRN-CRCMCNTR
Alphabet: L =R%U {null}
function msg(p,i)
1: return p
function ctrl(p,y)

1V = QN (N {Hppvs | for all non-null preva € y})
2 return CC(V) - p

Critical points of Hep, and Ha. (locally Lipschitz)
o I 0 € int @H.,(P), then P is strict local maximum, all agents have same
cost, and P is incenter Voronoi configuration

e If 0 € int dHqc(P), then P is strict local minimum, all agents have same
cost, and P is

ircumcenter Voronoi configuration

Aggregate functions monotonically optimized along evolution

min ZLn(()smv[p])Hsp(P) > 0‘ ‘ max £_ La(o Igy(py) Hac(P) <0

Asymptotic convergence via nonsmooth LaSalle principle
@ Convergence to configurations where all agents whose local cost coincides
with aggregate cost are centered
o Convergence to center Voronoi configurations still open

Robotic Network: Sp in @ with absolute sensing of own position
Distributed Algorithm: VRN-NCNTR
Alphabet: L =R?U {null}
function msg(p, i)
1: return p
function ctrl(p,y)

1 V= Q0 (N {Hppreva
2: return z € IC(V) —p

for all non-null pyeva € y})




For € € Ruy, the e-disk-covering deployment task
@ Models for multi-agent networks
true, if [[pll - CC(VI(P))|2 < e i€ {1,....,n}

; © Rendezvous and connectivity maintenance
false, otherwise,

Te-de-aply(P) = {

@ Maintaining connectivity
For € € Rsg, the e-sphere-packing deployment task #; QirGupicenter algorithms
o Correctness analysis via nondeterministic systems

Tespapy(P) = @ Deployment

{true. if dista(pl, IC(VIN(P))) < ¢, i € {1,...,n},

false, otherwise,

o Expected-value deployment
o Geometric-center laws
o Disk-covering and sphere-packing deployment
FordeN, r € Rog and e € R, the following statements hold. o SS"I:(tl‘lr()ll]Z(‘(l h():‘mm.“y ‘p‘\tmnmg’
@ Balanced synchronization
Q@ on the network Sp,v any execution of the law CCypy-cromentn Monotonically @ Unbalanced synchronization
optimizes the multicenter function Hqc;
@ on the network Sp, any execution of the law CCypx-xoxtn monotonically @ Conclusions
optimizes the multicenter function M.
Joint work with Sara Susca (Honeywell)
and Sonia Martinez (UCSD) @ robots with “communication impacts” analogous to beads on a ring
@ some UAVs move along boundary of sensitive territory @ classic subject in dynamical systems and geometric mechanics
@ short-range communication and sensing billiards, iterated impact dynamics, gas theory of hard spheres

@ surveillance objective:

@ rich dynamics with even just 3 beads (distinct masses, elastic collisions)
minimize

rvice time for appearing events dynamics akin billiard flow inside acute triangle

communication network connectivity

dense periodic and nonperiodic modes, chaotic collision sequences

/ WO 9560 m kbt t t
Iterated Impact Dynamics of
N-Beads on a Ring*
»ej Bryan Cooley!
Paut K. Newion'

Example motion:
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Desired

o starting from random initial

synchronized behavior:

positions and velocities

every bead impacts its
neighbor at the same point

simultaneous impacts

Algorithm: (for presentation’s sake, beads sense their position)
Ist phase: compute average speed v and desired sweeping arcs

2nd phase for f €]3,1[, each bead:
e moves at nominal speed v if inside its desired sweeping arc
slows down (fv) when moving away of its sweeping arc
hesitate when early
when impact, change direction
speeds up when moving towards its desired sweeping arc

Achieve: asymptotically stabilize synchronized motion
Subject to:
@ arbitrary initial positions, velocities and directions of motion

@ beads can measure traveled distance, however
no absolute localization capability, no knowledge of

sircle length
@ no knowledge about n, adaptation to changing n (even and odd)
@ anynomous agents with memory and message sizes independent of n

ect of measurement and control noise

@ smooth dependency upon eff

Fully-adaptive feedback synchronization

Balanced initial condition:

\

e n is even

o d; is direction of motion

o 327 di(0) = 327 di(t) = 0

© 1/2 move initially
clockwise




If an impact between bead ¢ and i + 1 occurs:
o beads average nominal speeds: v = v, = 0.5(v; + vit1)
o beads change their direction of motion if d; = —d; 41 (head-head type)
@ beads update their desired sweeping arc

exponential average consensus

o configuration space
Q order-preserving dynamics 6; € Arc(6;-1,6:41) on T"
Q@ A" x {c,cc}" x (Rao)" x (arcs)" x {away, towards}"

o hybrid system with
@ piccewise constant dynamics
@ event-triggered jumps: impact, cross boundary

@ how to prove balanced synchronization?
@ what happens for unbalanced initial conditions 37" d;(0) # 07

@ what happens for n is odd?

@ how to describe the system with a single variable?

o passage time: t¥ = kth time when bead i passes by sweeping arc center

e return time: 8;(t) = duration between last two passage times

o if impact between beads (i, + 1) at time ¢, then

-7 2f o
[’L](f,‘), pe i v {0,}07)
Oit1 1% H Sit1
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stochastic




Distributed averaging algorithm or consensus algorithms
2(L+1) = Ax(l)

with (row) stochastic matrix A: j=1anda;; >0

o let G(A) be unweighted matrix associated to A

o a sequence of stochastic {A(€)}sen is non-degenerate if 3o > 0 s.t.
a;;(€) > o and a;;(f) € {0} U [, 1], for all i # j

Theorem (Convergence to average consensus)
Let {A(€)}sen be a non-degenerate sequence of st

@ cach evolution x converges to average(x(0))1,,

@ for all £ €N, the graph \J.», G(A(r)) is connected

. symmetric matrices

Only assumption required is balanced initial conditions.

@ analysis of cascade consensus algorithms

@ global attractivity of synchronous behavior

Balanced Synchronization Theorem: For balanced initial directions, assume
@ exact average speed and desired sweeping arcs
@ initial conditions lead to well-defined 1st passage times
Then balanced synchronization is asymptotically stable
1,-TF
n

e U N

1-unbalanced initial condition:
e n is odd

o YT d(0) = X di(r) = +1

r
N
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© I-unbalanced syne: beads meet at ares boundaries + 75— —
21—

f

1-unbalanced Synchronization Theorem: For 3. d;(0) = +1, assume
@ exact average speed and desired sweeping arcs
@ initial conditions lead to well-defined 1st passage times

Then 1-unbalanced synchronization is asymptotically stable

22n
Ji T2k _paee-n)) Z 2274
Jim )=t

xamined various motion coordination tasks

@ rendezvous: circumcenter algorithms

@ connectivity maintenance: flexible constraint sets in
convex/nonconvex scenarios

@ deployment: gradient algorithms based on geometric centers

@ beads problem: robotic patrolling via synchronization

of geometric-center control

Correctness and (1-d) complexity analy
and communication laws via
@ Discrete- and continuous-time nondeterministic dynamical systems
@ Invariance principles, stability analysis

@ CGeometric structures and geometric optimization

Plenty of open problems!

Conjecture global asy-synchronization in the balanced and unbalanced case

D-unbalanced period orbits Theorem:
Let Y 7 di(0) = £D. If there exists an orbit a]nng which beads i and i + 1

then f <

2 f
meet at boundary if —
21-f 11 n/ID]

olutions, and tools we have not
, flocking, coll

Literature is full of exciting problem:

Formation control,

boundary cooperative control over
ronsmnt qmphx hronism, delays, distributec
estimation, spatial estimation, data fusion, target tracking, networks

with minimal  target assig , vehicle and
energy-constrained motion, vehicle routing, dynarmc servicing
problems, load balancing, robotic

Too long a list to fit it here!




