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Chapter Four

Connectivity maintenance and rendezvous

The aims of this chapter are twofold. First, we introduce the rendezvous
problem and analyze various coordination algorithms that achieve it, provid-
ing upper and lower bounds on their time complexity. Second, we introduce
the problem of maintaining connectivity among a group of mobile robots
and use geometric approaches to preserve this topological property of the
network.

Loosely speaking, the rendezvous objective is to achieve agreement over the
physical location of as many robots as possible, that is, to steer the robots
to a common location. This objective is to be achieved with the limited
information flow described in the model of the network. Typically, it will
be impossible to solve the rendezvous problem for all robots if the robots
are placed in such a way that they do not form a connected communication
graph. Therefore, it is reasonable to assume that the network is connected at
initial time, and that a good property of any rendezvous algorithm is that
of maintaining some form of connectivity among robots. This discussion
motivates the connectivity maintenance problem. Once a model for when two
robots can acquire each other’s relative position is adopted, this problem is
of particular relevance, as the inter-robot topology depends on the physical
states of the robots. Our exposition here is mainly based on Ando et al.
(1999), Cortés et al. (2006), and Ganguli et al. (2009).

The chapter is organized as follows. In the first section, we formally
introduce the two coordination problems. In the second section, we de-
fine various connectivity constraint sets to limit the motion of robots in
order to maintain network connectivity. These notions of constraint sets
allows us to study in the next section various rendezvous algorithms with
connectivity maintenance properties. We study numerous variations of the
circumcenter algorithm for the rendezvous objective and we characterize its
complexity. Additionally, we introduce the perimeter-minimizing algorithm
for nonconvex environments. The fourth section presents various simula-
tions of the proposed motion-coordination algorithms. We end the chapter
with three sections on, respectively, bibliographic notes, proofs of the results
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presented in the chapter, and exercises. Our technical treatment is based
on the LaSalle Invariance Principle, on linear distributed algorithms, and
on geometric tools such as proximity graphs and robust visibility.

4.1 PROBLEM STATEMENT

We begin this section by reviewing the classes of networks and the types of
problems that will be considered in the chapter.

4.1.1 Networks with discrete-time motion

In the course of the chapter, we will consider the robotic networks Sdisk, SLD,
and S∞-disk, and the relative-sensing networks Srs

disk and Srs
vis-disk presented

in Example 3.4 and in Section 3.2.2.

For the robotic networks Sdisk, SLD, and S∞-disk, we will, however, assume
that the robots move in discrete time, that is, we adopt the discrete-time
motion model

p[i](ℓ + 1) = p[i](ℓ) + u[i](ℓ), i ∈ {1, . . . , n}. (4.1.1)

Similarly, for the relative-sensing networks Srs
disk and Srs

vis-disk, we adopt the
discrete-time motion model

p
[i]
fixed(ℓ + 1) = p

[i]
fixed(ℓ) + R

[i]
fixedu

[i]
i (ℓ), i ∈ {1, . . . , n}. (4.1.2)

As an aside, if we express the previous equation with respect to frame i at
time t, then equation (4.1.2) reads

p
[i]
(frame i at time ℓ)(ℓ + 1) = u

[i]
(frame i at time ℓ)(ℓ), i ∈ {1, . . . , n}.

We present the treatment in discrete time for simplicity. It is easy to show
that any control law for the discrete-time motion model can be implemented
in the continuous-time networks. In what follows, we begin our discussion
by assuming no bound on the control magnitude and we later introduce an
upper bound denoted by umax.

4.1.2 The rendezvous task

Next, we discuss the rendezvous problem. There are different ways of formu-
lating this objective in terms of task maps. Let S = ({1, . . . , n},R, Ecmm)
be a uniform robotic network. The (exact) rendezvous task Trndzvs : Xn →
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{true, false} for S is the coordination task defined by

Trndzvs(x
[1], . . . , x[n])

=

{

true, if x[i] = x[j], for all (i, j) ∈ Ecmm(x[1], . . . , x[n]),

false, otherwise.

Next, assume that, for the same network S = ({1, . . . , n},R, Ecmm), the
robots’ physical state space is X ⊂ R

d. It is convenient to review some
basic notation consistent with what we adopted in Chapter 2. We let P =
{p[1], . . . , p[n]} denote the set of agents’ location in X ⊂ R

d and we let P be
an array of n points in R

d. Furthermore, we let avrg denote the average of
a finite point set in R

d, that is,

avrg({q1, . . . , qk}) =
1

k
(q1 + · · · + qk).

For ε ∈ R>0, the ε-rendezvous task Tε-rndzvs : (Rd)n → {true, false} for S
is defined as follows: Tε-rndzvs is true at P if and only if each robot position
p[i], for i ∈ {1, . . . , n}, is at distance less than ε from the average position of
its Ecmm-neighbors. Formally,

Tε-rndzvs(P ) = true

⇐⇒ ‖p[i] − avrg
(

{p[j] | (i, j) ∈ Ecmm(P )}
)

‖2 < ε, i ∈ {1, . . . , n}.

4.1.3 The connectivity maintenance problem

Assume that the communication graph, computed as a function of the robot
positions, is connected: How should the robots move in such a way that their
communication graph is again connected? Clearly, the problem depends
upon: (1) how the robots move; and (2) what proximity graph describes
the communication graph or, in the case of relative-sensing networks, what
sensor model is available on each robot.

The key idea is to restrict the allowable motion of each agent. Different
motion constraint sets correspond to different communication or sensing
graphs. We have three objectives in doing so. First, we aim to achieve this
objective only based on local measurements or 1-hop communication, that
is, without introducing processor states explicitly dedicated to this task.
Second, the constraint sets should depend continuously on the position of
the robots. Third, we have the somehow informal objective to design the
constraint sets as “large” as possible so as to minimally constrain the motion
of the robots.
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4.2 CONNECTIVITY MAINTENANCE ALGORITHMS

In this section, we present some algorithms that might be used by a robotic
network to maintain communication connectivity. The results presented in
this section start with the original idea introduced by Ando et al. (1999) for
first-order robots communicating along the edges of a disk graph, that is,
for the network described in Example 3.4. This idea is then generalized to
a number of useful settings. The properties of proximity graphs presented
in Section 2.2 play a key role in formulating and solving the connectivity
problem.

4.2.1 Enforcing range-limited links

First, we aim to constrain the motion of two first-order agents in order to
maintain a communication link between them. We assume that the commu-
nication takes place over the disk graph Gdisk(r) with communication range
r > 0.

Loosely stated, the pairwise connectivity maintenance problem is as fol-
lows: given two neighbors in the proximity graph Gdisk(r), find a rich set of
control inputs for both agents with the property that, after moving, both
agents are again within distance r. We provide a solution to this problem
as follows.

Definition 4.1 (Pairwise connectivity constraint set). Consider two
agents i and j at positions p[i] ∈ R

d and p[j] ∈ R
d such that ‖p[i]−p[j]‖2 ≤ r.

The connectivity constraint set of agent i with respect to agent j is

Xdisk

(

p[i], p[j]
)

= B
(p[j] + p[i]

2
,
r

2

)

. •

Note that both robots, i and j, can independently compute their respec-
tive connectivity constraint sets. The proof of the following result is straight-
forward.

Lemma 4.2 (Maintaining pairwise connectivity). Assume that the
distance between agents p[i] and p[j] is no more than r, at some time ℓ. If
the control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xdisk

(

p[i](ℓ), p[j](ℓ)
)

− p[i](ℓ) = B
(p[j](ℓ) − p[i](ℓ)

2
,
r

2

)

,

and, similarly, u[j](ℓ) ∈ Xdisk

(

p[j](ℓ), p[i](ℓ)
)

− p[j](ℓ), then, according to the
discrete-time motion model (4.1.1):
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(i) the positions of both agents at time ℓ + 1 are inside the connectivity

constraint set Xdisk

(

p[i](ℓ), p[j](ℓ)
)

; and

(ii) the distance between the agents’ positions at time ℓ + 1 is no more
than r.

We illustrate these pairwise connectivity maintenance concepts in Fig-
ure 4.1.

Σ
fixed

Σ
[i]

Σ
[j]

Figure 4.1 An illustration of the connectivity maintenance constraint. Starting from po-
sitions p[i] and p[j], the robots are restricted to moving inside the disk centered
at Xdisk(p

[i], p[j]) = 1
2

`

p[i] + p[j]
´

with radius r
2
.

Remark 4.3 (Constraints for relative-sensing networks). Let us con-
sider a relative-sensing network with a disk sensor of radius r (see Exam-
ple 3.15). Recall the following facts about this model. First, agent i mea-
sures the position of robot j in its frame Σ[i], that is, robot i measures

p
[j]
i . Second, p

[i]
i = 0d. Third, if W ⊂ R

d, then Wi denotes its expression

in the frame Σ[i]. Combining these notions and assuming that the inter-
agent distance is no more than r, the pairwise connectivity constraint set in
Definition 4.1 satisfies

(

Xdisk(p
[i], p[j])

)

i
= Xdisk

(

0d, p
[j]
i

)

= B
(p

[j]
i

2
,
r

2

)

. •

4.2.2 Enforcing network connectivity

Here, we focus on how to constrain the mobility of multiple agents in order
to maintain connectivity for the entire network that they form. We again
consider the case of first-order agents moving according to the discrete-time
equation (4.1.1) and communicating over Gdisk(r).
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Loosely stated, the network connectivity maintenance problem is as fol-
lows: Given n agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} in which they
form a connected r-disk graph Gdisk(r), the objective is to find a rich set
of control inputs for all agents with the property that, at time ℓ + 1, the
agents’ new positions P(ℓ+1) again form a connected r-disk graph Gdisk(r).
We provide a simple, but potentially conservative, solution to this problem
as follows.

Definition 4.4 (Connectivity constraint set for groups of agents).
Consider a group of agents at positions P = {p[1], . . . , p[n]} ⊂ R

d. The
connectivity constraint set of agent i with respect to P is

Xdisk(p
[i],P) =

{

x ∈ Xdisk(p
[i], q) | q ∈ P \ {p[i]} s.t. ‖q − p[i]‖2 ≤ r

}

. •

In other words, if q1, . . . , ql are agents’ positions whose distance from p[i]

is no more than r, then the connectivity constraint set for agent i is the
intersection of the constraint sets B

(

1
2(qk + p[i]), r

2

)

for k ∈ {1, . . . , l} (see
Figure 4.2).

Figure 4.2 An illustration of network connectivity maintenance. The connectivity Xdisk-
constraint set of the white-colored agent is the intersection of the individual
constraint sets determined by its neighbors.

The following result is a consequence of Lemma 4.2.

Lemma 4.5 (Maintaining network connectivity). Consider a group
of agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ R

d at time ℓ. If each
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agent’s control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xdisk

(

p[i](ℓ),P(ℓ)
)

− p[i](ℓ), i ∈ {1, . . . , n},
then, according to the discrete-time motion model (4.1.1):

(i) each agent remains in its connectivity constraint set, that is, p[i](ℓ+
1) ∈ Xdisk(p

[i](ℓ),P(ℓ));

(ii) each edge of Gdisk(r) at P(ℓ) is maintained after the motion step,
that is, if ‖p[i](ℓ)−p[j](ℓ)‖2 ≤ r, then also ‖p[i](ℓ+1)−p[j](ℓ+1)‖2 ≤
r;

(iii) if Gdisk(r) at time ℓ is connected, then Gdisk(r) at time ℓ + 1 is
connected; and

(iv) the number of connected components of the graph Gdisk(r) at time
ℓ+1 is equal to or smaller than the number of connected components
of the graph Gdisk(r) at time ℓ.

Remark 4.6 (Constraints for relative-sensing networks: cont’d).
Following up on Remark 4.3, the connectivity constraint set in Definition 4.4,
written in the frame Σ[i], is

Xdisk(0d, {p[1]
i , . . . , p

[n]
i })

=
{

x ∈ B
(p

[j]
i

2
,
r

2

)

∣

∣ j 6= i such that ‖p[j] − p[i]‖2 ≤ r
}

. •

Next, we relax the constraints in Definition 4.4 to provide the network
nodes with larger, and therefore less conservative, motion-constraint sets.
Recall from Section 2.2 the relative neighborhood graph GRN, the Gabriel
graph GG, and the r-limited Delaunay graph GLD(r). These proximity graphs
are illustrated in Figure 2.8. From Theorem 2.8 and Proposition 2.9, respec-
tively, recall that the proximity graphs GRN ∩Gdisk(r), GG ∩Gdisk(r), and
GLD(r) have the following properties:

(i) they have the same connected components as Gdisk(r), that is, for all
point sets P ⊂ R

d, all graphs have the same number of connected
components consisting of the same vertices; and

(ii) they are spatially distributed over Gdisk(r).

These mathematical facts have two implications. First, to maintain or de-
crease the number of connected components of a disk graph, it is sufficient
to maintain or decrease the number of connected components of any of the
three proximity graphs GRN ∩Gdisk(r), GG ∩Gdisk(r), and GLD(r). Because
each of these graphs is more sparse than the disk graph, that is, they are
subgraphs of Gdisk(r), fewer connectivity constraints need to be imposed.
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Second, because these proximity graphs are spatially distributed over the
disk graph, it is possible for each agent to determine which of its neigh-
bors in Gdisk(r) are also its neighbors in these subgraphs. We formalize this
discussion as follows.

Definition 4.7 (G-connectivity constraint set). Let G be a proxim-
ity graph that is spatially distributed over Gdisk(r) and that has the same
connected components as Gdisk(r). Consider a group of agents at positions
P = {p[1], . . . , p[n]} ⊂ R

d. The G-connectivity constraint set of agent i with
respect to P is

Xdisk,G(p[i],P)

=
{

x ∈ Xdisk(p
[i], q) | q ∈ P s.t. (q, p[i]) is an edge of G(P)

}

. •

Lemma 4.8 (Maintaining connectivity of sparser networks). Let G
be a proximity graph that is spatially distributed over Gdisk(r) and that has
the same connected components as Gdisk(r). Consider a group of agents at
positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ R

d at time ℓ. If each agent’s control
u[i](ℓ) takes value in

u[i](ℓ) ∈ Xdisk,G
(

p[i](ℓ),P(ℓ)
)

− p[i](ℓ), i ∈ {1, . . . , n},

then, according to the discrete-time motion model (4.1.1):

(i) each agent remains in its G-connectivity constraint set;

(ii) two agents that are in the same connected component of G remain
at the same connected component after the motion step; and

(iii) the number of connected components of the graph G at P(ℓ + 1) is
equal to or smaller than the number of connected components of the
graph G at P(ℓ).

The reader is asked to provide a proof of this result in Exercise E4.1.

4.2.3 Enforcing range-limited line-of-sight links and network connectivity

Here, we consider the connectivity maintenance problem for a group of
agents with range-limited line-of-sight communication, as described in Ex-
ample 3.6. It is convenient to treat directly and only the case of a com-
pact allowable nonconvex environment Q ⊂ R

2 contracted into Qδ = {q ∈
Q | dist(q, ∂Q) ≥ δ} for a small positive δ. We present a solution based on
designing constraint sets that guarantee that every edge of the range-limited
visibility graph Gvis-disk,Qδ

is preserved.
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pj

pi

(a)

p[j]
p[i]

(b)

Figure 4.3 Image (a) shows the set Vidisk(p
[i]; Qδ)∩B( 1

2
(p[i] + p[j]), r

2
). Image (b) illus-

trates the execution of the iterated truncation algorithm. Robots i and
j are constrained to remain inside the shaded region in (b), which is a convex
subset of Qδ and of the closed ball with center 1

2
(p[i] + p[j]) and radius r

2
.

We begin with a useful observation and a corresponding geometric algo-
rithm. Assume that, at time ℓ, robot j is inside the range-limited visibility
set from p[i] in Qδ, that is, with the notation of Section 2.1.2,

p[j](ℓ) ∈ Vidisk(p
[i](ℓ); Qδ) = Vi(p[i](ℓ); Qδ)∩B(p[i](ℓ), r).

This property holds also at time ℓ + 1 if ‖p[i](ℓ + 1) − p[j](ℓ + 1)‖2 ≤ r and
[p[i](ℓ + 1), p[j](ℓ + 1)] ⊂ Qδ. A sufficient condition is therefore that

p[i](ℓ + 1), p[j](ℓ + 1) ∈ X ,

for some convex subset X of Qδ ∩B
(

1
2(p[i](ℓ)+p[j](ℓ)), r

2

)

. Intuitively speak-
ing, X plays the role of X -constraint set for the proximity graph Gvis-disk,Qδ

.

The following geometric algorithm, given the positions p[i] and p[j] in an
environment Qδ, computes precisely one such convex subset:

function iterated truncation(p[i], p[j]; Qδ)
% Executed by robot i at position p[i] assuming that robot j is at position

p[j] within range-limited line of sight of p[i]

1: Xtemp := Vidisk(p
[i]; Qδ)∩B

(

1
2(p[i] + p[j]), r

2

)

2: while ∂Xtemp contains a concavity do

3: v := a strictly concave point of ∂Xtemp closest to [p[i], p[j]]
4: Xtemp := Xtemp ∩HQδ

(v)
5: return Xtemp

Note: in step 3: multiple points belonging to distinct concavities may
satisfy the required property. If so, v may be chosen as any of them.

Figure 4.3 illustrates an example convex constraint set computed by the
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iterated truncation algorithm. Figure 4.4 illustrates the step-by-step
execution required to generate Figure 4.3(b).

vpj

pi

pj

pi

v

pj

pi

v

v

pj

pi

Figure 4.4 From left to right, a sample run of the iterated truncation algorithm.
The set Xtemp := Vidisk(p

[i]; Qδ)∩B( 1
2
(p[i] +p[j]), r

2
) is shown in Figure 4.3(a).

The lightly and darkly shaded regions together represent Xtemp at the current
iteration. The darkly shaded region represents Xtemp ∩HQδ

(v), where v is as
described in step 3:. The outcome of the execution is shown in Figure 4.3(b).

Next, we characterize the main properties of the iterated truncation

algorithm. It is convenient to define the set

J = {(p, q) ∈ Qδ × Qδ | [p, q] ∈ Qδ and ‖p − q‖2 ≤ r}.

Proposition 4.9 (Properties of the iterated truncation algorithm).
Consider the δ-contraction of a compact allowable environment Qδ with κ
strict concavities, and let (p[i], p[j]) ∈ J . The following statements hold:

(i) The iterated truncation algorithm, invoked with arguments
(p[i], p[j]; Qδ), terminates in at most κ steps; denote its output by
Xvis-disk(p

[i], p[j]; Qδ).

(ii) Xvis-disk(p
[i], p[j]; Qδ) is nonempty, compact and convex.

(iii) Xvis-disk(p
[i], p[j]; Qδ) = Xvis-disk(p

[j], p[i]; Qδ).

(iv) The set-valued map (p, q) 7→ Xvis-disk(p, q; Qδ) is closed at J .

In the interest of brevity, we do not include the proof here and instead
refer the reader to Ganguli et al. (2009). We just mention that fact (iii) is
a consequence of the fact that all relevant concavities in the computation of
Xvis-disk(p

[i], p[j]; Qδ) are visible from both agents p[i] and p[j]. We are finally
ready to provide analogs of Definition 4.4 and Lemma 4.5.

Definition 4.10 (Line-of-sight connectivity constraint set). Consider
a nonconvex allowable environment Qδ and two agents i and j within range-
limited line of sight. We call Xvis-disk(p

[i], p[j]; Qδ) the pairwise line-of-sight
connectivity constraint set of agent i with respect to agent j. Furthermore,
given agents at positions P = {p[1], . . . , p[n]} ⊂ Qδ that are all within range-
limited line of sight of agent i, the line-of-sight connectivity constraint sets

14
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of agent i with respect to P is

Xvis-disk(p
[i],P; Qδ) =

{

x ∈ Xvis-disk(p
[i], q; Qδ) | q ∈ P \ {p[i]}

}

. •

The following result is a consequence of Proposition 4.9.

Lemma 4.11 (Maintaining network line-of-sight connectivity). Con-
sider a group of agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Qδ at time
ℓ. If each agent’s control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xvis-disk

(

p[i](ℓ),P(ℓ); Qδ

)

− p[i](ℓ), i ∈ {1, . . . , n},
then, according to the discrete-time motion model (4.1.1):

(i) each agent remains in its constraint set, that is,

p[i](ℓ + 1) ∈ Xvis-disk(p
[i](ℓ),P(ℓ); Qδ);

(ii) each edge of Gvis-disk,Qδ
at P(ℓ) is maintained after the motion step,

that is, if p[i] and p[j] are within range-limited line of sight at time
ℓ, then they are within range-limited line of sight also at time ℓ + 1;

(iii) if Gvis-disk,Qδ
at P(ℓ) is connected, then Gvis-disk,Qδ

at P(ℓ + 1) is
connected; and

(iv) the number of connected components of the graph Gvis-disk,Qδ
at P(ℓ+

1) is equal to or smaller than the number of connected components
of the graph Gvis-disk,Qδ

at P(ℓ).

Remark 4.12 (Constraints for relative-sensing networks: cont’d).
Following up on Remarks 4.3 and 4.6, we consider a relative-sensing network
with range-limited visibility sensors (see Example 3.16). To compute the
connectivity constraint set for this network, it suffices to provide a relative
sensing version of the iterated truncation algorithm:

function relative-sensing iterated truncation(y; yenv)
% Executed by robot i with range-limited visibility sensor:

robot measurement is y = p
[j]
i ∈ Vidisk(02; (Qδ)i) for j 6= i

environment measurement is yenv = Vidisk(02; (Qδ)i)

1: Xtemp := yenv ∩B
(p

[j]
i

2 , r
2

)

2: while ∂Xtemp contains a concavity do
3: v := a strictly concave point of ∂Xtemp closest to [02, y]
4: Xtemp := Xtemp ∩Hyenv

(v)
5: return Xtemp

The algorithm output is Xvis-disk(0d, y), for y = p
[j]
i ∈ Vidisk(02; (Qδ)i). •

Next, we relax the constraints in Definition 4.10 to provide the network
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nodes with larger, and therefore less conservative, motion constraint sets.
Similarly to Section 4.2.2, we seek to enforce the preservation of a smaller
number of range-limited line-of-sight links, while still making sure that the
overall network connectivity is preserved. To do this, we recall from Sec-
tion 2.2 the notion of locally cliqueless graph Glc,G of a proximity graph
G. This proximity graph is illustrated in Figure 2.12. Let us use the short-
hand notation Glc-vis-disk,Qδ

≡ Glc,Gvis-disk,Qδ
. From Theorems 2.11(ii) and (iii),

respectively, recall that Glc-vis-disk,Qδ
has the following properties:

(i) it has the same connected components as Gvis-disk,Qδ
, that is, for all

point sets P ⊂ R
d, the graph has the same number of connected

components consisting of the same vertices; and

(ii) it is spatially distributed over Gvis-disk,Qδ
.

Because of (i), to maintain or decrease the number of connected components
of a range-limited visibility graph, it is sufficient to maintain or decrease the
number of connected components of the sparser graph Glc-vis-disk,Qδ

. Because
of (ii), it is possible for each agent to determine which of its neighbors in
Gvis-disk,Qδ

are its neighbors also in Glc-vis-disk,Qδ
. We formalize this discussion

as follows.

Definition 4.13 (Locally cliqueless line-of-sight connectivity con-
straint set). Consider a nonconvex allowable environment Qδ ⊂ R

2 and a
group of agents at positions P = {p[1], . . . , p[n]} ⊂ Q. The locally cliqueless
line-of-sight connectivity constraint set of agent i with respect to P is

Xlc-vis-disk(p
[i],P; Qδ) =

{

x ∈ Xvis-disk(p
[i], q; Qδ)

∣

∣

q ∈ P s.t. (q, p[i]) is an edge of Glc-vis-disk,Qδ
(P)

}

. •

The following result is a direct consequence of the previous arguments.

Lemma 4.14 (Maintaining connectivity of sparser networks). Con-
sider a group of agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Qδ at time
ℓ. If each agent’s control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xlc-vis-disk

(

p[i](ℓ),P(ℓ); Qδ

)

− p[i](ℓ), i ∈ {1, . . . , n},

then, according to the discrete-time motion model (4.1.1):

(i) each agent remains in its locally cliqueless line-of-sight connectivity
constraint set;

(ii) two agents that are in the same connected component of Glc-vis-disk,Qδ

remain at the same connected component after the motion step; and

(iii) the number of connected components of the graph Glc-vis-disk,Qδ
at

16

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 4: Rendezvous

P(ℓ + 1) is equal to or smaller than the number of connected com-
ponents of the graph Glc-vis-disk,Qδ

at P(ℓ).

4.3 RENDEZVOUS ALGORITHMS

In this section, we present some algorithms that might be used by a robotic
network to achieve rendezvous. Throughout the section, we mainly focus on
the uniform network Sdisk of locally connected first-order agents in R

d; this
robotic network was introduced in Example 3.4.

4.3.1 Averaging control and communication law

We first study a behavior in which agents move toward a position computed
as the average of the received messages. This law is related to the distributed
linear algorithms discussed in Section 1.6 and, in particular, to adjacency-
based agreement algorithms and Vicsek’s model. This algorithm has also
been studied in the context of “opinion dynamics under bounded confidence”
and is known in the literature as the Krause model.

We loosely describe the averaging law, which we denote by CCaveraging,
as follows:

[Informal description] In each communication round each agent
performs the following tasks: (i) it transmits its position and
receives its neighbors’ positions; (ii) it computes the average of
the point set comprised of its neighbors and of itself. Between
communication rounds, each robot moves toward the average
point that it computed.

We next formulate the algorithm, using the description model of Chap-
ter 3. The law is uniform, static, and data-sampled, with standard message-
generation function. (Recall from Definition 3.9 and Remark 3.11 that a
control and coordination law (1) is uniform if processor state set, message-
generation, state-transition and control functions are the same for each
agent; (2) is static if the processor state set is a singleton, i.e., the law
requires no memory; (3) is data-sampled if if the control functions are in-
dependent of the current position of the robot and depend only upon the
robots position at the last sample time.)

Robotic Network: Sdisk with motion model (4.1.1) in R
d,

with absolute sensing of own position, and
with communication range r
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Distributed Algorithm: averaging

Alphabet: A = R
d ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: return avrg({p}∪{prcvd | prcvd is a non-null message in y}) − p

An implementation of this control and communication law is shown in
Figure 4.5 for d = 1. Note that, along the evolution, (1) several robots
rendezvous, that is, agree upon a common location, and (2) some robots are
connected at the simulation’s beginning and not connected at the simula-
tion’s end (e.g., robots number 8 and 9, counting from the left). Our analysis

11
22
33
44

77
66
55

Figure 4.5 The evolution of a robotic network Sdisk, with r = 1.5, under the averaging

control and communication law. The vertical axis corresponds to the elapsed
time, and the horizontal axis to the positions of the agents in the real line.
The 51 agents are initially randomly deployed over the interval [−15, 15].

of the performance of this law is contained in the following theorem, whose
proof is postponed to Section 4.6.1.

Theorem 4.15 (Correctness and time complexity of averaging law).
For d = 1, the network Sdisk, the law CCaveraging achieves the task Trndzvs

with time complexity

TC(Trndzvs, CCaveraging) ∈ O(n5),

TC(Trndzvs, CCaveraging) ∈ Ω(n).

4.3.2 Circumcenter control and communication laws

Here, we define the crcmcntr control and communication law for the net-
work Sdisk. The law solves the rendezvous problem while keeping the net-
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work connected. This law was introduced by Ando et al. (1999) and later
studied by Lin et al. (2007a) and Cortés et al. (2006).

We begin by recalling two useful geometric concepts: (i) given a bounded
set S, its circumcenter CC(S) is the center of the closed ball of minimum
radius containing S (see Section 2.1.3); (ii) given a point p in a convex set Q
and a second point q, the from-to-inside map fti(p, q, S) is the point in the
closed segment [p, q] which is at the same time closest to q and inside S (see
Section 2.1.1). Finally, recall also the connectivity constraint set introduced
in Definition 4.4.

We loosely describe the crcmcntr law, denoted by CCcrcmcntr, as fol-
lows:

[Informal description] In each communication round each agent
performs the following tasks: (i) it transmits its position and re-
ceives its neighbors’ positions; (ii) it computes the circumcenter
of the point set comprised of its neighbors and of itself. Between
communication rounds, each robot moves toward this circum-
center point while maintaining connectivity with its neighbors
using appropriate connectivity constraint sets.

We next formulate the algorithm, using the description model of Chap-
ter 3. The law is uniform, static, and data-sampled, with standard message-
generation function:

Robotic Network: Sdisk with discrete-time motion model (4.1.1),
with absolute sensing of own position, and
with communication range r, in R

d

Distributed Algorithm: crcmcntr

Alphabet: A = R
d ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: pgoal := CC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: X := Xdisk(p, {prcvd | for all non-null prcvd ∈ y})
3: return fti(p, pgoal,X ) − p

This algorithm is illustrated in Figure 4.6.
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Figure 4.6 An illustration of the execution of the crcmcntr algorithm. Each row of
plots represents an iteration of the law. In each round, each agent computes
its goal point and its constraint set, and then moves toward the goal while
remaining in the constraint set.

Next, let us note that it is possible and straightforward to implement
the circumcenter law as a static relative-sensing control law on the relative-
sensing network with disk sensors Srs

disk introduced in Example 3.15:

Relative Sensing Network: Srs
disk with motion model (4.1.2),

no communication, relative sensing for robot i given by:

robot measurements y contains p
[j]
i ∈ B(02, r) for all j 6= i

Distributed Algorithm: relative-sensing crcmcntr

function ctl(y)

1: pgoal := CC({0d}∪{psnsd | for all non-null psnsd ∈ y})
2: X := Xdisk(0d, {psnsd | for all non-null psnsd ∈ y})
3: return fti(0d, pgoal,X )

In the remainder of this section, we generalize the circumcenter law in a
number of ways: (i) we modify the constraint set by imposing bounds on
the control inputs and by relaxing the connectivity constraint as much as
possible, while maintaining connectivity guarantees; and (ii) we implement
the circumcenter law on two distinct communication graphs. Let us note
that many of these generalized circumcenter laws can also be implemented
as relative-sensing control laws; in the interest of brevity, we do not present
the details.
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4.3.2.1 Circumcenter law with control bounds and relaxed connectivity con-

straints

First, assume that the agents have a compact input space U = B(0d, umax),
with umax ∈ R>0. Additionally, we adopt the relaxed G-connectivity con-
straint sets as follows. Let G be a proximity graph that is spatially dis-
tributed over Gdisk(r) and that has the same connected components as
Gdisk(r); examples include GRN ∩Gdisk(r), GG ∩Gdisk(r), and GLD(r). Recall
the G-connectivity constraint set from Definition 4.7. Combining the relaxed
connectivity constraint and the control magnitude bound, we redefine the
control function in the crcmcntr law to be:

function ctl(p, y)
% Includes control bound and relaxed G-connectivity constraint

1: pgoal := CC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: X := Xdisk,G(p, {prcvd | for all non-null prcvd ∈ y})∩B(p, umax)
3: return fti(p, pgoal,X ) − p

Second, the circumcenter law can be implemented also on robotic net-
works with different proximity graphs. For example, we can implement the
circumcenter algorithm without any change on the following network.

4.3.2.2 Circumcenter law on the limited Delaunay graph

We consider the same set of physical agents as in Sdisk. For r ∈ R>0,
we adopt as communication graph the r-limited Delaunay graph GLD(r),
described in Section 2.2. These data define the uniform robotic network
SLD = ({1, . . . , n},R, ELD), as described in Example 3.4. On this network,
we implement the crcmcntr law without any change, that is, with the same
message-generation and control function as we did for the implementation
on the network Sdisk.

4.3.2.3 Parallel circumcenter law on the ∞-disk graph

We consider the network S∞-disk of first-order robots in R
d, connected ac-

cording to the G∞-disk(r) graph (see Example 3.4). For this network, we
define the pll-crcmcntr law, which we denoted by CCpll-crcmcntr, by de-
signing d decoupled circumcenter laws running in parallel on each coordinate
axis of R

d. As before, this law is uniform and static. What is remarkable,
however, is that no constraint is required to maintain connectivity (see Ex-
ercise E4.4).
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The parallel circumcenter of the set S, denoted by PCC(S), is the center
of the smallest axis-aligned rectangle containing S. In other words, PCC(S)
is the component-wise circumcenter of S (see Figure 4.7). We state the

Figure 4.7 The gray point is the parallel circumcenter of the collection of black points.

parallel circumcenter law as follows:

Robotic Network: S∞-disk with discrete-time motion model (4.1.1) in R
d,

with absolute sensing of own position, and
with communication range r in L∞-metric

Distributed Algorithm: pll-crcmcntr

Alphabet: A = R
d ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: pgoal := PCC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: return pgoal − p

4.3.3 Correctness and complexity of circumcenter laws

In this section, we characterize the convergence and complexity properties
of the circumcenter law and of its variations. The following theorem sum-
marizes the results known in the literature about the asymptotic properties
of the circumcenter law.

Theorem 4.16 (Correctness of the circumcenter laws). For d ∈ N,
r ∈ R>0, and ε ∈ R>0, the following statements hold:
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(i) on the network Sdisk, the law CCcrcmcntr (with control magnitude
bounds and relaxed G-connectivity constraints) achieves the exact
rendezvous task Trndzvs;

(ii) on the network SLD, the law CCcrcmcntr achieves the ε-rendezvous
task Tε-rndzvs; and

(iii) on the network S∞-disk, the law CCpll-crcmcntr achieves the exact
rendezvous task Trndzvs.

Furthermore, the evolutions of (Sdisk, CCcrcmcntr), (SLD, CCcrcmcntr), and
(S∞-disk, CCpll-crcmcntr) have the following properties:

(iv) If any two agents belong to the same connected component of the
respective communication graph at ℓ ∈ Z≥0, then they continue to
belong to the same connected component for all subsequent times
k ≥ ℓ.

(v) For each evolution, there exists P ∗ = (p∗1, . . . , p
∗
n) ∈ (Rd)n such that:

(a) the evolution asymptotically approaches P ∗; and

(b) for each i, j ∈ {1, . . . , n}, either p∗i = p∗j , or ‖p∗i − p∗j‖2 > r
(for the networks Sdisk and SLD) or ‖p∗i − p∗j‖∞ > r (for the
network S∞-disk).

The proof of this theorem is given in Section 4.6.2. The robustness of
the circumcenter control and communication laws can be characterized with
respect to link failures (see Cortés et al., 2006).

Next, we analyze the time complexity of CCcrcmcntr. As we will see, next,
the complexity of CCcrcmcntr differs dramatically when applied to robotic
networks with different communication graphs. We provide complete results
for the networks Sdisk and SLD only for the case d = 1.

Theorem 4.17 (Time complexity of circumcenter laws). For r ∈ R>0

and ε ∈ ]0, 1[, the following statements hold:

(i) on the network Sdisk, evolving on the real line R (i.e., with d = 1),
TC(Trndzvs, CCcrcmcntr) ∈ Θ(n);

(ii) on the network SLD, evolving on the real line R (i.e., with d = 1),
TC(T(rε)-rndzvs, CCcrcmcntr) ∈ Θ(n2 log(nε−1)); and

(iii) on the network S∞-disk, evolving on Euclidean space (i.e., with d ∈
N), TC(Trndzvs, CCpll-crcmcntr) ∈ Θ(n).

The proof of this result is contained in Mart́ınez et al. (2007).
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Remark 4.18 (Analysis in higher dimensions). The results in The-
orems 4.17(i) and (ii) induce lower bounds on the time complexity of the
circumcenter law in higher dimensions. Indeed, for arbitrary d ≥ 1, we have
the following:

(i) on the network Sdisk, TC(Trndzvs, CCcrcmcntr) ∈ Ω(n);

(ii) on the network SLD, TC(T(rε)-rndzvs, CCcrcmcntr) ∈ Ω(n2 log(nε−1)).

We have performed extensive numerical simulations for the case d = 2
and the network Sdisk. We run the algorithm starting from generic initial
configurations (where, in particular, the robots’ positions are not aligned)
contained in a bounded region of R

2. We have consistently obtained that
the time complexity to achieve Trndzvs with CCcrcmcntr starting from these
initial configurations is independent of the number of robots. This leads
us to conjecture that initial configurations where all robots are aligned
(equivalently, the 1-dimensional case) give rise to the worst possible per-
formance of the algorithm. In other words, we conjecture that, for d ≥ 2,
TC(Trndzvs, CCcrcmcntr) = Θ(n). •

Remark 4.19 (Congestion effects). As discussed in Remark 3.8, one
way of incorporating congestion effects into the network operation is to as-
sume that the parameters of the physical components of the network depend
upon the number of robots—for instance, by assuming that the communica-
tion range decreases with the number of robots. Theorem 4.17 presents an
alternative, equivalent, way of looking at congestion: the results hold un-
der the assumption that the communication range is constant, but allow for
the diameter of the initial network configuration (the maximum inter-agent
distance) to grow unbounded with the number of robots. •

4.3.4 The circumcenter law in nonconvex environments

In this section, we adapt the circumcenter algorithm to work on networks
in planar nonconvex allowable environments. Throughout the section, we
only consider the case of a compact allowable nonconvex environment Q
contracted into Qδ for a small positive δ. We present the algorithm in
two formats: for the communication-based network Svis-disk described in
Example 3.6, and for the relative-sensing network Srs

vis-disk described in Ex-
ample 3.16.

We modify the circumcenter algorithm in three ways: first, we adopt the
connectivity constraints described in the previous section for range-limited
line-of-sight links; second, we further restrict the robot motion to remain
inside the relative convex hull of the sensed robot positions; and third, we
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move towards the circumcenter of the constraint set, instead of the circum-
center of the neighbors positions. The details of the algorithm are as follows:

Robotic Network: Svis-disk with discrete-time motion model (4.1.1),
absolute sensing of own position and of Qδ, and
communication range r within line of sight (Gvis-disk,Qδ

)

Distributed Algorithm: nonconvex crcmcntr

Alphabet: A = R
2 ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: X1 := Xvis-disk(p, {prcvd | for all non-null prcvd ∈ y}; Qδ)
2: X2 := rco({p}∪{prcvd | for all non-null prcvd ∈ y}; Vi(p; Qδ))
3: pgoal := CC(X1 ∩X2)

4: return fti(p, pgoal, B(p, umax)) − p

Next, we present the relative sensing version; recall that p
[i]
i = 02 and that,

as discussed in Section 3.2.3 in the context of the evolution of a relative
sensing network with environment sensors, yenv denotes the environment
measurement provided by the range-limited visibility sensor:

Relative Sensing Network: Srs
vis-disk with motion model (4.1.2) in Qδ,

no communication, relative sensing for robot i given by:

robot measurements y contains p
[j]
i ∈ Vidisk(02; (Qδ)i) for j 6= i

environment sensing is yenv = Vidisk(02; (Qδ)i)

Distributed Algorithm: nonconvex relative-sensing crcmcntr

function ctl(y, yenv)

1: X1 := Xvis-disk(02, {psnsd | for all non-null psnsd ∈ y}; yenv)
2: X2 := rco({02}∪{psnsd | for all non-null psnsd ∈ y}; yenv)
3: pgoal := CC(X1 ∩X2)

4: return fti(02, pgoal, B(02, umax))

Theorem 4.20 (Correctness of the circumcenter law in nonconvex
environments). For δ > 0, let Qδ be a contraction of a compact allow-
able nonconvex environment Q. For r ∈ R>0 and ε ∈ R>0, on the net-
work Svis-disk, the law CCnonconvex crcmcntr (with control magnitude bounds)
achieves the ε-rendezvous task Tε-rndzvs. Furthermore, the evolution has the
following properties:
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(i) If any two agents belong to the same connected component of the
graph Gvis-disk,Qδ

at ℓ ∈ Z≥0, then they continue to belong to the
same connected component for all subsequent times k ≥ ℓ.

(ii) There exists P ∗ = (p∗1, . . . , p
∗
n) ∈ Qn

δ such that:

(a) the evolution asymptotically approaches P ∗; and

(b) for each i, j ∈ {1, . . . , n}, either p∗i = p∗j , or p∗i and p∗j are
not within range-limited line of sight.

The proof of this result can be found in Ganguli et al. (2009). A brief
sketch of the proof steps is presented in Section 4.6.4. The complexity of
the nonconvex crcmcntr law has not been characterized. However, note
that the evolution from any initial configuration such that Gvis,Qδ

is complete
is also an evolution of the crcmcntr law discussed in Section 4.3.2, and
hence Theorem 4.17(i) induces a lower bound on the time complexity.

4.4 SIMULATION RESULTS

In this section, we illustrate the execution of some circumcenter control and
communication laws introduced in this chapter. The crcmcntr law is im-
plemented on the networks Sdisk, SLD, and S∞-disk in MathematicaR© as a
library of routines and a main program running the simulation. The pack-
ages PlanGeom.m and SpatialGeom.m contain routines for the computation
of geometric objects in R

2 and R
3, respectively. These routines are freely

available at the book webpage http://coordinationbook.info

First, we show evolutions of (Sdisk,crcmcntr) in two and three dimen-
sions in Figures 4.8 and 4.9, respectively. Measuring displacements in me-
ters, we consider random initial positions over the square [−7, 7] × [−7, 7]
and the cube [−7, 7] × [−7, 7] × [−7, 7]. The 25 robotic agents have a com-
munication radius r = 4 and a compact input space U = B(0d, umax), with
umax = 0.15. As the simulations show, the task Trndzvs is achieved, as guar-
anteed by Theorem 4.16(i).

Second, within the same setup, we show an evolution of (SLD,crcmcntr)
in two dimensions in Figure 4.10. As the simulation shows, the task Tε-rndzvs

is achieved, as guaranteed by Theorem 4.16(ii).

Third, we show an evolution of (S∞-disk,pll-crcmcntr) in two dimen-
sions in Figure 4.11. As the simulations show, the task Trndzvs is achieved,
as guaranteed by Theorem 4.16(iii).

Finally, we refer the interested reader to Ganguli et al. (2009) for simula-
tion results for the nonconvex crcmcntr algorithm.
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(a) (b)

Figure 4.8 The evolution of (Sdisk,crcmcntr) with n = 25 robots in 2 dimensions: (a)
shows the initial connected network configuration; (b) shows the evolution of
the individual agents until rendezvous is achieved.

4.5 NOTES

The rendezvous problem and the circumcenter algorithm were originally
introduced by Ando et al. (1999). The circumcenter algorithm has been
extended to other control policies, including asynchronous implementations,
in Lin et al. (2007a,b). The circumcenter algorithm has been extended
beyond planar problems to arbitrary dimensions in Cortés et al. (2006),
where its robustness properties are also characterized. Regarding Theo-
rem 4.16, the results on Sdisk appeared originally in Ando et al. (1999); the
results on SLD and on S∞-disk appeared originally in Cortés et al. (2006) and
in Mart́ınez et al. (2007), respectively. Variations of the circumcenter law
in the presence of noise and sensor errors are studied in Mart́ınez (2009).
The continuous-time version of the circumcenter law, with no connectivity
constraints, is analyzed in Lin et al. (2007c). Continuous-time control laws
for groups of robots with simple first-order dynamics and unicycle dynamics
are proposed in Lin et al. (2004, 2005) and Dimarogonas and Kyriakopou-
los (2007). In these works, the inter-robot topology is time dependent and
assumed a priori to be connected at all times. Rendezvous under communi-
cation quantization is studied in Fagnani et al. (2004) and Carli and Bullo
(2009). Rendezvous for unicycle robots with minimal sensing capabilities
is studied by Yu et al. (2008). Relationships with classic curve-shortening
flows are studied by Smith et al. (2007).

Rendezvous has also been studied within the computer science literature,
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Figure 4.9 The evolution of (Sdisk,crcmcntr) with n = 25 robots in 3 dimensions: (a)
shows the initial connected network configuration; (b) shows the evolution of
the individual agents until rendezvous is achieved.

where the problem is referred to as the “gathering,” or point formation,
problem. Flocchini et al. (1999) and Suzuki and Yamashita (1999) study the
point formation problem under the assumption that each robot is capable
of sensing all other robots. Flocchini et al. (2005) propose asynchronous
algorithms to solve the gathering problem, and Agmon and Peleg (2006)
study the solvability of the problem in the presence of faulty robots.

Multi-robot rendezvous with line-of-sight sensors is considered in Roy and
Dudek (2001), where solutions are proposed based on the exploration of the
unknown environment and the selection of appropriate rendezvous points
at pre-specified times. Hayes et al. (2003) also consider rendezvous at a
specified location for visually guided agents, but the proposed solution re-
quires each agent to have knowledge of the location of all other agents. The
problem of computing a multi-robot rendezvous point in polyhedral sur-
faces made of triangular faces is considered in Lanthier et al. (2005). The
perimeter-minimizing algorithm presented by Ganguli et al. (2009) solves
the rendezvous problem for sensor-based networks with line-of-sight range-
limited sensors in nonconvex environments.

Regarding the connectivity maintenance problem, a number of works have
addressed the problem of designing a coordination algorithm that achieves
a general, non-specified task while preserving connectivity. The centralized
solution proposed in Zavlanos and Pappas (2005) allows for a general range
of agent motions. The distributed solution presented by Savla et al. (2009)
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(a) (b)

Figure 4.10 The evolution of (SLD,crcmcntr) with n = 25 robots in 2 dimensions: (a)
shows the initial connected network configuration; (b) shows the evolution of
the individual agents until rendezvous is achieved.

gives connectivity maintaining constraints for second-order control systems
with input magnitude bounds. A distributed algorithm to perform graph
rearrangements that preserve the connectivity is presented in Schuresko and
Cortés (2007). Connectivity problems have been studied also in other con-
texts. Langbort and Gupta (2009) study the impact of the connectivity
of the interconnection topology in a class of network optimization prob-
lems. Spanos and Murray (2005) generate connectivity-preserving motions
between pairs of formations. Ji and Egerstedt (2007) design Laplacian-based
control laws to solve formation control problems while preserving connec-
tivity. Various works have focused on designing the network motion so that
some desired measure of connectivity (e.g., algebraic connectivity) is max-
imized under position constraints. Boyd (2006) and de Gennaro and Jad-
babaie (2006) consider convex constraints, while Kim and Mesbahi (2006)
deal with a class of nonconvex constraints. Zavlanos and Pappas (2007) use
potential fields to maximize algebraic connectivity.

A continuous-time version of the averaging control and communication law
is also known as the Hegselmann-Krause model for “opinion dynamics under
bounded confidence” (see Hegselmann and Krause, 2002; Lorenz, 2007). In
this model, each agent may change its opinion by averaging it with that of
neighbors who are in an ε-confidence area. In other words, the difference
between the agent’s opinion and those of its neighbors’ should be bounded
by ε. A similar model where the communication between agents is random
is the Deffuant-Weisbuch model, inspired by a model of dissemination of
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(a) (b)

Figure 4.11 The evolution of (S∞-disk, pll-crcmcntr) with n = 25 robots in 2 dimen-
sions: (a) shows the initial connected network configuration; (b) shows the
evolution of the individual agents until rendezvous is achieved.

culture (see Deffuant et al., 2000; Axelrod, 1997).

4.6 PROOFS

This section gathers the proofs of the main results presented in the chapter.

4.6.1 Proof of Theorem 4.15

Proof. One can easily prove that, along the evolution of the network, the or-
dering of the agents is preserved, that is, the inequality p[i] ≤ p[j] is preserved
at the next time step. However, links between agents are not necessarily pre-
served (see, e.g., Figure 4.8). Indeed, connected components may split along
the evolution. However, merging events do not occur. Consider two contigu-
ous connected components C1 and C2 of Gdisk(r), with C1 to the left of C2.
By definition, the rightmost agent in the component C1 and the leftmost
agent in the component C2 are at a distance strictly larger than r. Now,
by executing the algorithm, they can only but increase that distance, since
the rightmost agent in C1 will move to the left, and the leftmost agent in
C2 will move to the right. Therefore, connected components do not merge.

Consider first the case of an initial network configuration for which the
communication graph remains connected throughout the evolution. Without
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loss of generality, assume that the agents are ordered from left to right ac-
cording to their identifier, that is, p[1](0) ≤ · · · ≤ p[n](0). Let α ∈ {3, . . . , n}
have the property that agents {2, . . . , α − 1} are neighbors of agent 1, and
agent α is not. (If, instead, all agents are within an interval of length r, then
rendezvous is achieved in 1 time instant, and the statement in theorem is
easily seen to be true.) Note that we can assume that agents {2, . . . , α− 1}
are also neighbors of agent α. If this is not the case, then those agents that
are neighbors of agent 1 and not of agent α rendezvous with agent 1 at the
next time instant. At the time instant ℓ = 1, the new updated positions
satisfy

p[1](1) =
1

α − 1

α−1
∑

k=1

p[k](0),

p[γ](1) ∈
[ 1

α

α
∑

k=1

p[k](0), ∗
]

, γ ∈ {2, . . . , α − 1},

where ∗ denotes a certain unimportant point.

Now, we show that

p[1](α − 1) − p[1](0) ≥ r

α(α − 1)
. (4.6.1)

Let us first show the inequality for α = 3. Because of the assumption that
the communication graph remains connected, agent 2 is still a neighbor of
agent 1 at the time instant ℓ = 1. Therefore, p[1](2) ≥ 1

2(p[1](1) + p[2](1)),
and from here we deduce

p[1](2) − p[1](0) ≥ 1

2

(

p[2](1) − p[1](0)
)

≥ 1

2

(1

3

(

p[1](0) + p[2](0) + p[3](0)
)

− p[1](0)
)

≥ 1

6

(

p[3](0) − p[1](0)
)

≥ r

6
.

Let us now proceed by induction. Assume that inequality (4.6.1) is valid for
α − 1, and let us prove it for α. Consider first the possibility, when at the
time instant ℓ = 1, that the agent α − 1 is still a neighbor of agent 1. In
this case, p[1](2) ≥ 1

α−1

∑α−1
k=1 p[k](1), and from here we deduce

p[1](2) − p[1](0) ≥ 1

α − 1

(

p[α−1](1) − p[1](0)
)

≥ 1

α − 1

( 1

α

α
∑

k=1

p[k](0) − p[1](0)
)

≥ 1

α(α − 1)

(

p[α](0) − p[1](0)
)

≥ r

α(α − 1)
,

which, in particular, implies (4.6.1). Consider then the case when agent
α − 1 is not a neighbor of agent 1 at the time instant ℓ = 1. Let β < α
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such that agent β − 1 is a neighbor of agent 1 at ℓ = 1, but agent β is not.
Since β < α, we have by induction p[1](β)− p[1](1) ≥ r

β(β−1) . From here, we

deduce that p[1](α − 1) − p[1](0) ≥ r
α(α−1) .

It is clear that after ℓ1 = α−1, we could again consider two complementary
cases (either agent 1 has all others as neighbors or not) and repeat the same
argument once again. In that way, we would find ℓ2 such that the distance
traveled by agent 1 after ℓ2 rounds would be lower bounded by 2r

n(n−1) .

Repeating this argument iteratively, the worst possible case is one in which
agent 1 keeps moving to the right and, at each time step, there is always
another agent which is not a neighbor. Since the diameter of the initial
condition P0 is upper bounded by (n − 1)r, in the worst possible situation,
there exists some time ℓk such that kr

(n−1)n = O(r(n− 1)). This implies that

k = O((n − 1)2n). Now we can upper bound the total convergence time ℓk

by ℓk =
∑k

i=1 αi − k ≤ k(n − 1), where we have used that αi ≤ n for all
i ∈ {1, . . . , n}. From here, we see that ℓk = O((n − 1)3n), and hence we
deduce that in O(n(n− 1)3) time instants there cannot be any agent which
is not a neighbor of the agent 1. Hence, all agents rendezvous at the next
time instant. Consequently,

TC(Trndzvs, CCaveraging, P0) = O(n(n − 1)3).

Finally, for a general initial configuration P0, because there are a finite
number of agents, only a finite number of splittings (at most n − 1) of the
connected components of the communication graph can take place along the
evolution. Therefore, we conclude that TC(Trndzvs, CCaveraging) = O(n5).

Let us now prove the lower bound. Consider an initial configuration P0 ∈
R

n where all agents are positioned in increasing order according to their
identity, and exactly at a distance r apart—say, p[i+1](0) − p[i](0) = r, i ∈
{1, . . . , n − 1}. Assume for simplicity that n is odd—when n is even, one
can reason in an analogous way. Because of the symmetry of the initial
condition, in the first time step, only agents 1 and n move. All the remaining
agents remain in their position, because it coincides with the average of its
neighbors’ position and its own. At the second time step, only agents 1, 2,
n − 1, and n move, and the others remain static because of the symmetry.
Applying this idea iteratively, one deduces that the time step when agents
n−1

2 and n+3
2 move for the first time is lower bounded by n−1

2 . Since both

agents have still at least a neighbor (agent n+1
2 ), the task Trndzvs has not been

achieved yet at this time step. Therefore, TC(Trndzvs, CCaveraging, P0) ≥
n−1

2 , and the result follows. �
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4.6.2 Proof of Theorem 4.16

Proof. We divide the proof of the theorem into three groups, one per net-
work.

STEP 1: Facts on (Sdisk, CCcrcmcntr). Fact (iv) for (Sdisk, CCcrcmcntr) is
a direct consequence of the control function definition of the crcmcntr law
and Lemma 4.8.

Let us show fact (i). Because G has the same connected components
as Gdisk(r), fact (iv) implies that the number of connected components of
Gdisk(r) can only but decrease. In other words, the number of agents in
each of the connected components of Gdisk(r) is non-decreasing. Since there
is a finite number of agents, there must exist ℓ0 such that the identity of
the agents in each connected component of Gdisk(r) is fixed for all ℓ ≥ ℓ0

(that is, no more agents are added to the connected component afterwards).
In what follows, without loss of generality, we assume that there is only
one connected component after ℓ0, i.e., the graph is connected (if this is
not the case, then the same argument follows through for each connected
component).

We prove that the law CCcrcmcntr (with control magnitude bounds and re-
laxed G-connectivity constraints) achieves the exact rendezvous task Trndzvs

in the following two steps:

(a) We first define a set-valued dynamical system ((Rd)n, (Rd)n, T ) such
that the evolutions of (Sdisk, CCcrcmcntr), starting from an initial
configuration where Gdisk(r) is connected, are contained in the set
of evolutions of the set-valued dynamical system.

(b) We then establish that any evolution of ((Rd)n, (Rd)n, T ) converges
to a point in diag((Rd)n) (the point might be different for different
evolutions).

This strategy is analogous to the discussion regarding the Overapproxima-
tion Lemma for time-dependent systems in Section 1.3.5.

Let as perform (a). Given a connected graph G with vertices {1, . . . , n}, let
us consider the constraint sets and goal points defined with respect to G. In
other words, given P = (p1, . . . , pn) ∈ (Rd)n, define for each i ∈ {1, . . . , n},

(pgoal)i := CC({pi}∪{pj | j ∈ NG(i)}),
Xi :=

⋂

{

B(pi+pj

2 , ri(P )
2 ) | j ∈ NG(i)

}

∩B(pi, umax),

where ri(P ) = max{r, max{‖pi − pj‖2 | j ∈ NG(i)}}. Since two neighbors
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according to G can be arbitrarily far from each other in R
d, we need to

modify the definition of the constraint set with the radius ri(P ) to prevent
Xi from becoming empty. Note that if ‖pi − pj‖2 ≤ r for all j ∈ NG(i), then
ri(P ) = r and, therefore, Xi = Xdisk,G(pi, P )∩B(pi, umax). It is also worth
observing that both (pgoal)i and Xi change continuously with (p1, . . . , pn).

Define the map ftiG : (Rd)n → (Rd)n by

ftiG(p1, . . . , pn) = (fti(p1, (pgoal)1,X1), . . . , fti(pn, (pgoal)n,Xn)).

One can think of ftiG as a circumcenter law where the neighboring relation-
ships among the agents never change. Because fti is continuous, and (pgoal)i

and Xi, i ∈ {1, . . . , n}, change continuously with (p1, . . . , pn), we deduce
that ftiG is continuous.

We now define a set-valued dynamical system ((Rd)n, (Rd)n, T ) through
the set-valued map T : (Rd)n ⇉ (Rd)n given by

T (p1, . . . , pn) = {ftiG(p1, . . . , pn) | G is a strongly connected digraph}.
Note that the evolution of the crcmcntr law using a proximity graph such
as Gdisk(r) is just one of the multiple evolutions described by this set-valued
map. This concludes (a).

Let us now perform (b). To characterize the convergence properties of
the set-valued dynamical system, we use the LaSalle Invariance Principle in
Theorem 1.21. With the notation of this result, we select W = (Rd)n. This
set is clearly strongly positively invariant for ((Rd)n, (Rd)n, T ).

Closedness of the set-valued map. Since ftiG is continuous for each di-
graph G and there is a finite number of strongly connected digraphs on the
vertices {1, . . . , n}, Exercise E1.9 implies that T is closed.

Common Lyapunov function. Define the function Vdiam : (Rd)n → R≥0

by

Vdiam(P ) = max{‖pi − pj‖ | i, j ∈ {1, . . . , n}}.
With a slight abuse of notation, we denote by co(P ) the convex hull of
{p1, . . . , pn} ⊂ R

d. Note that Vdiam(P ) = diam(co(P )). The function Vdiam

has the following properties:

(i) Vdiam is continuous and invariant under permutations of its argu-
ments.

(ii) Vdiam(P ) = 0 if and only if P ∈ diag((Rd)n), where we recall that
diag((Rd)n) = {(p1, . . . , pn) ∈ (Rd)n | p[i] = · · · = p[n] ∈ R

d} de-
notes the diagonal set of (Rd)n. This fact is an immediate conse-
quence of the fact that, given a set S ⊂ (Rd)n, diam(co(S)) = 0 if
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and only if S is a singleton.

(iii) Vdiam is non-increasing along T on (Rd)n. Consider a finite set
of points S ∈ F((Rd)n) and let CC(S) be its circumcenter. From
Lemma 2.2(i), we have CC(S) ∈ co(S). Therefore, for any strongly
connected digraph G, we have that co(ftiG(P )) ⊂ co(P ) for any
P ∈ (Rd)n. Since for any two sets S1, S2 ⊂ (Rd)n such that co(S2) ⊂
co(S2) it holds that Vdiam(S2) ≤ Vdiam(S1), then Vdiam(ftiG(P )) ≤
Vdiam(P ) for any strongly connected digraph G, which implies that
Vdiam is non-increasing along T on (Rd)n.

Bounded evolutions. Consider any initial condition (p1(0), . . . , pn(0)) ∈
(Rd)n. For any strongly connected digraph, G, we have

ftiG(p1(ℓ), . . . , pn(ℓ)) ∈ co(p1(0), . . . , pn(0)),

for all ℓ ∈ Z≥0. Therefore, any evolution of the set-valued dynamical system
((Rd)n, (Rd)n, T ) is bounded.

Characterization of the invariant set. By the LaSalle Invariance for set-
valued dynamical systems in Theorem 1.21, any evolution with initial con-
dition in W = (Rd)n approaches the largest weakly positively invariant set
M contained in

{P ∈ (Rd)n | ∃P ′ ∈ T (P ) such that Vdiam(P ′) = Vdiam(P )}.

We show that M = diag((Rd)n). Clearly, diag((Rd)n) ⊂ M . To prove
the other inclusion, we reason by contradiction. Assume that P ∈ M \
diag((Rd)n) and, therefore, Vdiam(P ) > 0. Let G be a strongly connected di-
graph and consider ftiG(P ). For each i ∈ {1, . . . , n}, we distinguish two cases
depending on whether pi is or is not a vertex of co(P ). If pi 6∈ Ve(co(P )),
then Lemma 2.2(i) implies that fti(pi, (pgoal)i,Xi) ∈ co(P ) \ Ve(co(P )).

If pi ∈ Ve(co(P )), then we must take into consideration the possibility of
having more than one agent located at the same point. If the location of
all the neighbors of i in the digraph G coincides with pi, then agent i will
not move, and hence fti(pi, (pgoal)i,Xi) ∈ Ve(co(P )). However, we can show
that the application of ftiG strictly decreases the number of agents located
at pi. Let us denote this number by Ni, that is,

Ni = |{j ∈ {1, . . . , n} | pj = pi and pj ∈ {p1, . . . , pn}}|.

Since the digraph G is strongly connected, there must exist at least an
agent located at pi with a neighbor which is not located at pi (otherwise,
all agents would be at pi, which is a contradiction). In other words, there
exist i∗, j ∈ {1, . . . , n} such that pi∗ = pi, pj 6= pi, and j ∈ NG(i∗). By
Lemma 2.2(i), we have that (pgoal)i∗ ∈ co(P ) \ Ve(co(P )) and, therefore,
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(pgoal)i∗ 6= pi∗ . Combining this with the fact that

{pi}∪{pj | j ∈ NG(i)} ⊂ B(pi∗ , ri∗(P )),

we can apply Lemma 2.2(ii) to ensure that ]pi∗ , (pgoal)i∗ [ has nonempty in-
tersection with Xi∗ . Therefore, fti(pi∗ , (pgoal)i∗ ,Xi∗) ∈ co(P ) \ Ve(co(P )),
and the number Ni of agents located at pi decreases at least by one with
the application of ftiG.

Next, we show that, after a finite number of steps, no agents remain at
the location pi. Define N = max{Ni | pi ∈ Ve(co(P ))} < n − 1. Then
all agents in the configuration ftiG1

(ftiG2
(. . . ftiGN

(P ))) are contained in
co(P ) \ Ve(co(P )), for any collection of strongly connected directed graphs
G1, . . . , GN . Therefore, diam(co(ftiG1

(ftiG2
(. . . ftiGN

(P ))))) < diam(co(P )),
which contradicts the fact that M is weakly invariant.

Point convergence. We have proved that any evolution of ((Rd)n, (Rd)n, T )
approaches the set diag((Rd)n). To conclude the proof, let us show that the
convergence of each trajectory is to a point, rather than to the diagonal set.
Let {P (ℓ) | ℓ ∈ Z≥0} be an evolution of the set-valued dynamical system.
Since the sequence is contained in the compact set co(P (0)), there exists a
convergent subsequence {P (ℓk) | k ∈ Z≥0}, that is, there exists p ∈ R

d such
that

lim
k→+∞

P (ℓk) = (p, . . . , p). (4.6.2)

Let us show that the whole sequence {P (ℓ) | ℓ ∈ Z≥0} converges to (p, . . . , p).
Because of (4.6.2), for any ε > 0, there exists k0 such that for k ≥ k0 one has
co(P (ℓk)) ⊂ B(p, ε/

√
n). From this, we deduce that co(P (ℓ)) ⊂ B(p, ε/

√
n)

for all ℓ ≥ ℓk0
, which in turn implies that ‖P (ℓ) − (p, . . . , p)‖2 ≤ ε for all

ℓ ≥ ℓk0
, as claimed. This concludes (b).

The steps (a) and (b) imply that any evolution of (Sdisk, CCcrcmcntr) start-
ing from an initial configuration where Gdisk(r) is connected converges to a
point in diag((Rd)n). To conclude the proof of fact (i), we only need to es-
tablish that this convergence is in finite time. This last fact is a consequence
of Exercise E4.5.

Fact (v) for (Sdisk, CCcrcmcntr) is a consequence of facts (i) and (iv).

STEP 2: Facts on (SLD, CCcrcmcntr). The proof of facts (i), (iv), and (v)
for (SLD, CCcrcmcntr) is analogous to the proof of these facts for the pair
(Sdisk, CCcrcmcntr), and we leave it to the reader.

STEP 3: Facts on (S∞-disk, CCpll-crcmcntr). From the expression for
the control function of CCpll-crcmcntr, we deduce that the evolution un-
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der CCpll-crcmcntr of the robotic network S∞-disk (in d dimensions) can be
alternatively described as the evolution under CCcrcmcntr of d robotic net-
works Sdisk in R (see Exercise E4.4). Therefore, facts (i), (iv), and (v) for
the pair (S∞-disk, CCpll-crcmcntr) follow from facts (i), (iv), and (v) for the
pair (Sdisk, CCcrcmcntr). �

4.6.3 Proof of Theorem 4.17

Proof. Let P0 = (p[1](0), . . . , p[n](0)) ∈ R
n denote the initial condition.

Fact (i). For d = 1, the connectivity constraints on each agent i ∈ {1, . . . , n}
imposed by the constraint set

Xdisk(p
[i], {prcvd | for all non-null prcvd ∈ y[i]}) (4.6.3)

are superfluous. In other words, the goal configuration resulting from the
evaluation by agent i of the control function of the crcmcntr law belongs
to the constraint set in (4.6.3). Moreover, the order of the robots on the
real line is preserved from one time step to the next. Both observations are
a consequence of Exercise E4.3.

Let us first establish the upper bound in fact (i). Consider the case when
Gdisk(r) is connected at P0. Without loss of generality, assume that the
agents are ordered from left to right according to their identifier, that is,
p[1](0) ≤ · · · ≤ p[n](0). Let α ∈ {3, . . . , n} have the property that agents
{2, . . . , α − 1} are neighbors of agent 1, and agent α is not. (If, instead, all
agents are within an interval of length r, then rendezvous is achieved after
one time step, and the upper bound in fact (i) is easily seen to be true.)
Figure 4.12 presents an illustration of the definition of α. Note that we can

p[1](0) p[α−1](0) p[α](0)

r

Figure 4.12 The definition of α ∈ {3, . . . , n} for an initial network configuration.

assume that agents {2, . . . , α−1} are also neighbors of agent α. If this is not
the case, then those agents that are neighbors of agent 1 and not of agent
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α, rendezvous with agent 1 after one time step. At the time instant ℓ = 1,
the new updated positions satisfy

p[1](1) =
p[1](0) + p[α−1](0)

2
,

p[γ](1) ∈
[

p[1](0) + p[α](0)

2
,
p[1](0) + p[γ](0) + r

2

]

,

for γ ∈ {2, . . . , α − 1}. These equalities imply that p[1](1) − p[1](0) =
1
2

(

p[α−1](0) − p[1](0)
)

≤ 1
2r. Analogously, we deduce p[1](2) − p[1](1) ≤ 1

2r
and, therefore,

p[1](2) − p[1](0) ≤ r. (4.6.4)

On the other hand, from p[1](2) ∈
[

1
2

(

p[1](1) + p[α−1](1)
)

, ∗
]

(where the sym-
bol ∗ represents a certain unimportant point in R), we deduce

p[1](2) − p[1](0) ≥ 1

2

(

p[1](1) + p[α−1](1)
)

− p[1](0)

≥ 1

2

(

p[α−1](1) − p[1](0)
)

≥ 1

2

(p[1](0) + p[α](0)

2
− p[1](0)

)

=
1

4

(

p[α](0) − p[1](0)
)

≥ 1

4
r . (4.6.5)

Inequalities (4.6.4) and (4.6.5) mean that, after at most two time steps,
agent 1 has traveled a distance greater than r/4. In turn, this implies that

1

r
diam(co(P0)) ≤ TC(Trndzvs, CCcrcmcntr, P0) ≤

4

r
diam(co(P0)).

If Gdisk(r) is not connected at P0, note that along the network evolution,
the connected components of the r-disk graph do not change. Using the
previous characterization on the distance traveled by the leftmost agent of
each connected component in at most two time steps, we deduce that

TC(Trndzvs, CCcrcmcntr, P0) ≤
4

r
max

C∈C(P0)
diam(co(C)),

where C(P0) denotes the collection of connected components of Gdisk(r) at P0.
The connectedness of each C ∈ C(P0) implies that diam(co(C)) ≤ (n − 1)r,
and therefore, TC(Trndzvs, CCcrcmcntr) ∈ O(n).

The lower bound in fact (i) is established by considering P0 ∈ R
n such

that p[i+1](0)−p[i](0) = r, i ∈ {1, . . . , n−1}. For this configuration, we have
diam(co(P0)) = (n−1)r and, therefore, TC(Trndzvs, CCcrcmcntr, P0) ≥ n−1.

Fact (ii). In the r-limited Delaunay graph, two agents on the line that are
at most at a distance r from each other are neighbors if and only if there
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are no other agents between them. Also, note that the r-limited Delaunay
graph and the r-disk graph have the same connected components (cf., Theo-
rem 2.8). An argument similar to the one used in the proof of fact (i) above
guarantees that the connectivity constraints imposed by the constraint sets
Xdisk(p

[i], {prcvd | for all non-null prcvd ∈ y[i]}) are again superfluous.

Consider first the case when GLD(r) is connected at P0. Note that this
is equivalent to Gdisk(r) being connected at P0. Without loss of generality,
assume that the agents are ordered from left to right according to their
identifier, that is, p[1](0) ≤ · · · ≤ p[n](0). The evolution of the network under
CCcrcmcntr can then be described as the discrete-time dynamical system

p[1](ℓ + 1) =
1

2
(p[1](ℓ) + p[2](ℓ)),

p[2](ℓ + 1) =
1

2
(p[1](ℓ) + p[3](ℓ)),

...

p[n−1](ℓ + 1) =
1

2
(p[n−2](ℓ) + p[n](ℓ)),

p[n](ℓ + 1) =
1

2
(p[n−1](ℓ) + p[n](ℓ)).

Note that this evolution respects the ordering of the agents. Equivalently,
we can write P (ℓ + 1) = A P (ℓ), where A ∈ R

n×n is the matrix given by

A =



















1
2

1
2 0 . . . . . . 0

1
2 0 1

2 . . . . . . 0
0 1

2 0 1
2 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

2 0 1
2

0 . . . . . . 0 1
2

1
2



















.

Note that A = ATrid+
n

(

1
2 , 0

)

, as defined in Section 1.6.4. Theorem 1.80(i)

implies that, for Pave = 1
n1T

nP0, we have that limℓ→+∞ P (ℓ) = Pave1n, and

that the maximum time required for ‖P (ℓ) − Pave1n

∥

∥

2
≤ η‖P0 − Pave1n‖2

(over all initial conditions in R
n) is Θ

(

n2 log η−1
)

. (Note that this also
implies that agents rendezvous at the location given by the average of their
initial positions. In other words, the asymptotic rendezvous position for this
case can be expressed in closed form, as opposed to the case with the r-disk
graph.)

Next, let us convert the contraction inequality on 2-norms into an appro-
priate inequality on ∞-norms. Note that diam(co(P0)) ≤ (n − 1)r because
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GLD(r) is connected at P0. Therefore,

‖P0 − Pave1‖∞ = max
i∈{1,...,n}

|p[i](0) − Pave| ≤ |p[1](0) − p[n](0)| ≤ (n − 1)r.

For ℓ of order n2 log η−1, we use this bound on ‖P0 −Pave1‖∞ and the basic
inequalities ‖v‖∞ ≤ ‖v‖2 ≤ √

n‖v‖∞ for all v ∈ R
n, to obtain

‖P (ℓ) − Pave1‖∞ ≤ ‖P (ℓ) − Pave1‖2 ≤ η‖P0 − Pave1‖2

≤ η
√

n‖P0 − Pave1‖∞ ≤ η
√

n(n − 1)r.

This means that (rε)-rendezvous is achieved for η
√

n(n − 1)r = rε, that is,
in time O(n2 log η−1) = O(n2 log(nε−1)).

Next, we show the lower bound. Consider the unit-length eigenvector

vn =
√

2
n+1(sin π

n+1 , . . . , sin nπ
n+1)T ∈ R

n of Tridn−1(
1
2 , 0, 1

2) corresponding

to the largest singular value cos(π
n). For µ = −1

10
√

2
rn5/2, we then define the

initial condition

P0 = µP+

[

0
vn−1

]

∈ R
n.

One can show that p[i](0) < p[i+1](0) for i ∈ {1, . . . , n − 1}, that Pave = 0,
and that max{p[i+1](0)−p[i](0) | i ∈ {1, . . . , n−1}} ≤ r. Using Lemma 1.82
and because ‖w‖∞ ≤ ‖w‖2 ≤ √

n‖w‖∞ for all w ∈ R
n, we compute

‖P0‖∞ =
rn5/2

10
√

2

∥

∥

∥

∥

∥

P+

[

0
vn−1

]

∥

∥

∥

∥

∥

∞
≥ rn2

10
√

2

∥

∥

∥

∥

∥

P+

[

0
vn−1

]

∥

∥

∥

∥

∥

2

≥ rn

10
√

2
‖vn−1‖2 =

rn

10
√

2
.

The trajectory P (ℓ) = (cos(π
n))ℓP0 therefore satisfies

‖P (ℓ)‖∞ =
(

cos
(π

n

))ℓ
‖P0‖∞ ≥ rn

10
√

2

(

cos
(π

n

))ℓ
.

Therefore, ‖P (ℓ)‖∞ is larger than 1
2rε so long as 1

10
√

2
n(cos(π

n))ℓ > 1
2ε, that

is, so long as

ℓ <
log(ε−1n) − log(5

√
2)

− log
(

cos(π
n)

) .

In exercise E4.7, the reader is asked to show that the asymptotics of this
bound correspond to the lower bound in fact (i).

Now consider the case when GLD(r) is not connected at P0. Note that the
connected components do not change along the network evolution. There-
fore, the previous reasoning can be applied to each connected component.
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Since the number of agents in each connected component is strictly less than
n, the time complexity can only but improve. Therefore, we conclude that

TC(Trndzvs, CCcrcmcntr) ∈ Θ(n2 log(nε−1)).

Fact (iii). Recall from the proof of Theorem 4.6.2 that the evolution under
CCpll-crcmcntr of the robotic network S∞-disk (in d dimensions) can be alter-
natively described as the evolution under CCcrcmcntr of d robotic networks
Sdisk in R (see Exercise E4.4). Fact (iii) now follows from fact (i). �

4.6.4 Proof sketch of Theorem 4.20

Here, we only provide a sketch of the proof of Theorem 4.20. Fact (i) is a
consequence of the control function definition of the nonconvex crcmcntr

law in Section 4.3.4 and Lemma 4.11. Fact (ii) follows from the fact that
the law CCnonconvex crcmcntr (with control magnitude bounds) achieves the
ε-rendezvous task Tε-rndzvs and fact (i).

To show that, on the network Svis-disk, the law CCnonconvex crcmcntr (with
control magnitude bounds) achieves the ε-rendezvous task Tε-rndzvs, one can
follow the same overapproximation strategy that we used in the proof of
Theorem 4.16, STEP 1:, that is,

(a) define a set-valued dynamical system (Qn
δ , Qn

δ , T ) such that the evo-
lutions of (Svis-disk, CCnonconvex crcmcntr) starting from an initial
configuration where Gvis-disk,Qδ

is connected are contained in the set
of evolutions of the set-valued dynamical system; and

(b) establish that any evolution of (Qn
δ , Qn

δ , T ) converges to a point
in diag(Qn

δ ) (note that the point might be different for different
evolutions).

We refer to Ganguli et al. (2009) for a detailed development of this proof
strategy. Here, we only remark that in order to carry out (b), the proof uses
the LaSalle Invariance Principle in Theorem 1.21, with the perimeter of the
relative convex hull of a set of points as Lyapunov function.

4.7 EXERCISES

E4.1 (Maintaining connectivity of sparser networks). Prove Lemma 4.8.
Hint: Use Lemma 4.2 and the fact that G and Gdisk(r) have the same connected

components.

E4.2 (Maintaining network line-of-sight connectivity). Prove Lemma 4.11.
Hint: Use Proposition 4.9.
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E4.3 (Enforcing range-limited links is unnecessary for the crcmcntr law on
R). Let P = {p1, . . . , pn} ∈ F(R). For r ∈ R>0, we work with the r-disk proximity
graph Gdisk(r) evaluated at P. Let i ∈ {1, . . . , n} and consider the circumcenter
of the set comprised of pi and of its neighbors:

(pgoal)i = CC({pi}∪NGdisk(r),pi
(P)).

Show that the following hold:

(i) if pi and pj are neighbors in Gdisk(r), then (pgoal)i belongs to B(
pi+pj

2
, r

2
);

(ii) if pi and pj are neighbors in Gdisk(r) and pi ≤ pj , then (pgoal)i ≤ (pgoal)j ;
and

Finally, discuss the implication of (i) and (ii) in the execution of the crcmcntr

law on the 1-dimensional space R.
Hint: Express (pgoal)i as a function of the position of the leftmost and rightmost

points among the neighbors of pi.

E4.4 (Enforcing range-limited links is unnecessary for the pll-crcmcntr law).
Let P = {p1, . . . , pn} ∈ F(Rd) and r ∈ R>0. For k ∈ {1, . . . , d}, denote by
πk : R

d → R the projection onto the kth component. Do the following tasks:

(i) Show that pi and pj are neighbors in G∞-disk(r) if and only if, for all
k ∈ {1, . . . , d}, πk(pi) and πk(pj) are neighbors in Gdisk(r).

(ii) For S ⊂ R
d, justify that the parallel circumcenter PCC(S) ∈ R

d of S can
be described as

πk(PCC(S)) = CC(πk(S)), for k ∈ {1, . . . , d}.

(iii) Use (i), (ii), and Exercise E4.3(i) to justify that no constraint is required
to maintain connectivity of the ∞-disk graph in the pll-crcmcntr law.
In other words, show that if pi and pj are neighbors in the proxim-
ity graph G∞-disk(r), then also the points PCC({pi}∪NG∞-disk(r),pi

(P))
and PCC({pj}∪NG∞-disk(r),pj

(P)) are neighbors in the proximity graph
G∞-disk(r).

E4.5 (Finite-time convergence of the crcmcntr law on Sdisk). For umax, r ∈ R>0,
let a = min{umax,

r
2
}. Let P = {p1, . . . , pn} ∈ F(Rd), and assume that there exists

p ∈ R
d such that

{p1, . . . , pn} ⊂ B(p, a).

Do the following tasks:

(i) Show that Gdisk(r) evaluated at {p1, . . . , pn} is the complete graph.

(ii) Justify why ‖pi − CC({p1, . . . , pn})‖2 ≤ a, for all i ∈ {1, . . . , n}.
(iii) Show that CC({p1, . . . , pn}) ∈ Xdisk(pi,P)∩B(pi, umax).

(iv) What is the evolution of the pair (Sdisk, CCcrcmcntr) (with control magni-
tude bounds) starting from (p1, . . . , pn)?

E4.6 (Variation of the crcmcntr law). Let P = {p1, . . . , pn} ∈ F(Rd). For r ∈
R>0, we work with the r-disk proximity graph Gdisk(r) evaluated at P. For each
i ∈ {1, . . . , n}, consider the circumcenter of the set comprised of pi and of the
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mid-points with its neighbors:

(pgoal)i = CC
`

{pi}∪
˘pi + pj

2

˛

˛ pj ∈ NGdisk(r),pi
(P)

¯´

.

Do the following:

(i) Show that if pi and pj are neighbors in Gdisk(r), then (pgoal)i and (pgoal)j

are neighbors in Gdisk(r).

(ii) Use (i) to design a control and communication law on the network Sdisk

in R
d that, while not enforcing any connectivity constraints, preserves all

neighboring relationships in Gdisk(r) and achieves the ε-rendezvous task
Tε-rndzvs.

(iii) Justify why the law designed in (ii) does not achieve the exact rendezvous
task Trndzvs.

E4.7 (Asymptotics of the lower bound in Theorem 4.17(ii)). Show that, as
n → +∞,

log(ε−1n) − log(5
√

2)

− log
`

cos(π
n
)
´ =

n2

π2

`

log(ε−1
n) − log(5

√
2)

´

+ O(1).

Use this fact to complete the proof of the lower bound in the proof of Theo-
rem 4.17(ii).
Hint: Use the Taylor series expansion of log(cos(x)) at x = 0.
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Symbol Index

Xdisk

(

p[i], p[j]
)

: pairwise connectivity constraint set of agent at p[i] with

respect to agent at p[j], 8

Xdisk(p
[i],P) : connectivity constraint set of agent at p[i] with respect

to P, 10

Xdisk,G(p[i],P) : G-connectivity constraint set of agent at p[i] with respect
to P, 12

Xvis-disk(p
[i], p[j]; Qδ) :

line-of-sight connectivity constraint set in Qδ of agent at
p[i] with respect to agent at p[j], 15

Xvis-disk(p
[i],P; Qδ) :

line-of-sight connectivity constraint set in Qδ of agent at
p[i] with respect to P, 15

Xlc-vis-disk(p
[i],P; Qδ) :

locally cliqueless line-of-sight connectivity constraint set
in Qδ of agent at p[i] with respect to P, 16

avrg(S) : average of points in S, 7

CCaveraging : averaging control and communication law, 17

CCcrcmcntr : circumcenter control and communication law, 19

CCpll-crcmcntr : parallel circumcenter control and communication law, 22
CCnonconvex crcmcntr :

circumcenter control and communication law in noncon-
vex environments, 25

PCC(S) : parallel circumcenter of S, 22

Trndzvs : rendezvous task, 7

Tε-rndzvs : ε-rendezvous task, 7
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