
share May 20, 2009

Distributed Control of Robotic Networks
A Mathematical Approach to Motion Coordination Algorithms

Chapter 2: Geometric models and optimization

Francesco Bullo

Jorge Cortés

Sonia Mart́ınez

May 20, 2009

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD



share May 20, 2009

Copyright c© 2006-2009 by F. Bullo, J. Cortés, and S. Mart́ınez

This document is a complete free online version of the following book.

Distributed Control of Robotic Networks, by Francesco Bullo,
Jorge Cortés and Sonia Mart́ınez, Applied Mathematics Series,
Princeton University Press, 2009, ISBN 978-0-691-14195-4.

The book is available online at

http://coordinationbook.info

(i) You are allowed to freely download, share, print, or photocopy this
document.

(ii) You are not allowed to modify, sell, or claim authorship of any part
of this document.

(iii) We thank you for any feedback information, including suggestions,
evaluations, error descriptions, or comments about teaching or re-
search uses.

http://coordinationbook.info


share May 20, 2009

Contents

Chapter 2. Geometric models and optimization 5

2.1 Basic geometric notions 5
2.2 Proximity graphs 14
2.3 Geometric optimization problems and multicenter functions 21
2.4 Notes 34
2.5 Proofs 35
2.6 Exercises 43

Subject Index 53

Symbol Index 55



share May 20, 2009



share May 20, 2009

Chapter Two

Geometric models and optimization

This chapter presents various geometric objects and geometric optimiza-
tion problems that have strong connections with motion coordination. Ba-
sic geometric notions such as polytopes, centers, partitions, and distances
are ubiquitous in cooperative strategies, coordination tasks, and the inter-
action of robotic networks with the physical environment. The notion of
Voronoi partition finds application in diverse areas such as wireless com-
munications, signal compression, facility location, and mesh optimization.
Proximity graphs provide a natural way to mathematically model the net-
work interconnection topology resulting from the agents’ sensing and/or
communication capabilities. Finally, multicenter functions play the role of
aggregate objective functions in geometric optimization problems. We in-
troduce these concepts here in preparation for the later chapters.

The chapter is organized as follows. We begin by presenting basic geo-
metric constructions. This gives way to introduce the notion of proximity
graphs along with numerous examples. The next section of the chapter
presents geometric optimization problems and multicenter functions, pay-
ing special attention to the characterization of their smoothness properties
and critical points. We end the chapter with three sections on, respectively,
bibliographic notes, proofs of the results presented in the chapter, and ex-
ercises.

2.1 BASIC GEOMETRIC NOTIONS

In this section, we gather some classical geometric constructions that will
be invoked regularly throughout the book.

2.1.1 Polygons and polytopes

For p, q ∈ R
d, we let ]p, q[= {λp+(1−λ)q | λ ∈ ]0, 1[} and [p, q] = {λp+(1−

λ)q | λ ∈ [0, 1]} denote the open segment and closed segment, with extreme
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points p and q, respectively. We let Hp,q = {x ∈ R
d | ‖x− p‖2 ≤ ‖x− q‖2}

denote the closed halfspace of R
d of points closer (in Euclidean distance) to

p than to q. In the plane, we often refer to a halfspace as a halfplane.

As seen in Section 1.2, a set S ⊂ R
d is convex if, for any two points p, q

in S, the closed segment [p, q] is contained in S. The convex hull of a set
is the smallest (with respect to the inclusion) convex set that contains it.
We denote the convex hull of S by co(S). For S = {p1, . . . , pn} finite, the
convex hull can be explicitly described as follows:

co(S) =
{

λ1p1 + · · · + λnpn | λi ≥ 0 and

n
∑

i=1

λi = 1
}

.

Given p and q in R
d and a convex closed set Q ⊂ R

d with p ∈ Q (see
Figure 2.1), define the from-to-inside function by

fti(p, q,Q) =

{

q, if q ∈ Q,

[p, q]∩ ∂Q, if q 6∈ Q.

p

fti(p, q, Q)

q

p

fti(p, q, Q)

q

Figure 2.1 An illustration of the from-to-inside function fti.

The function fti selects the point in the closed segment [p, q] which is
at the same time closest to q and inside Q. Note that fti(p, q,Q) depends
continuously on p and q.

A polygon is a set in R
2 whose boundary is the union of a finite number of

closed segments. A polygon is simple if its boundary, regarded as a curve,
is not self-intersecting. We will only consider simple polygons. The closed
segments composing the boundary of a polygon are called edges, and points
resulting from the pairwise intersection between consecutive edges are called
vertices. A convex polygon can be written as:

(i) the convex hull of its set of vertices; or

(ii) the intersection of halfplanes defined by its edges.
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Two vertices whose open segment is contained in the interior of the polygon
define a diagonal. To each vertex of a polygon we associate an interior and
an exterior angle. A vertex is strictly convex (resp. strictly nonconvex ) if its
interior angle is strictly smaller (resp. greater) than π radians. A polygon
is nonconvex if it has at least one strictly concave vertex. The perimeter
of a polygon is the length of its boundary, that is, the sum of the lengths
of its edges. A polytope is the generalization of the notion of polygon to
R

d, for d ≥ 3. In this book, we will not consider nonconvex polytopes in
dimension larger than 2. As for convex polygons, a (convex) polytope in R

d

can be defined as either the convex hull of a finite set of points in R
d or the

bounded intersection of a finite set of halfspaces. A d − 1 face (or a facet)
of a polytope is the intersection between the polytope and the boundary of
a closed halfspace that defines the polytope. A d− 2 face is a d− 2 face of
a facet of the polytope. The faces of dimensions 0, 1, and d − 1 are called
vertices, edges, and faces, respectively. For a convex polytope Q, we will
refer to them as Ve(Q), Ed(Q), and Fa(Q), respectively.

2.1.2 Nonconvex geometry

In this section, we gather some basic notions on nonconvex geometry. We
consider environments that include nonconvex polygons as a particular case.

We begin with some visibility notions. Given S ⊂ R
d, two points p, q ∈ S

are visible to each other if the closed segment [p, q] is contained in S. The
visibility set Vi(p;S) is the set of all points in S visible from p. Given r > 0,
the range-limited visibility set Vidisk(p;S) = Vi(p;S)∩B(p, r) is the set of all
points in S within a distance r and visible from p. The set S is star-shaped if
there exists p ∈ S such that Vi(p;S) = S. The kernel set of S is comprised of
all the points with this property, that is, kernel(S) = {p ∈ S | Vi(p;S) = S}.
Trivially, any convex set is star-shaped. Given δ ∈ R>0, the δ-contraction of
S is the set Sδ = {p ∈ S | dist(p, ∂S) ≥ δ}. Note that if two points p, q ∈ S
are visible to each other in Sδ, then any point within distance δ of p and any
point within distance δ of q are visible to each other. Figure 2.2 illustrates
these visibility notions.

Next, we introduce various concavity notions. Given S ⊂ R
d connected

and closed, p ∈ ∂S is strictly concave if, for any ε ∈ R>0, there exist
q1, q2 ∈ B(p, ε)∩ ∂S such that [q1, q2] 6⊂ S. This definition coincides with
the notion of strictly concave vertex when the set S is a polygon. A strict
concavity of S is either an isolated strictly concave point or a concave arc,
that is, a connected set of strictly concave points. An allowable environment
S ⊂ R

2 is a set that satisfies the following properties: it is closed, simply
connected, has a finite number of strict concavities, and its boundary can
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p2

p1

q1

q2

Vidisk(p2, S)

Vi(p1; S) Vi(p1; Sδ)

Figure 2.2 An illustration of various visibility notions. The visibility set Vi(p1; S) from p1

in S, the visibility set Vi(p1; Sδ) from p1 in Sδ, and the range-limited visibility
set Vidisk(p2; S) from p2 in S are depicted in light gray. The dashed curve in
the interior of S corresponds to the boundary of the δ-contraction of S. The
points p2 and q1 are visible to each other in Sδ. The points q1 and q2 are visible
to each other in S, but they are not visible to each other in Sδ.

be described by a continuous and piecewise continuously differentiable curve
which is not differentiable at most at a finite number of points. Figure 2.3
shows a sample allowable environment. Given an allowable environment S,
let a point v belonging to a concave arc have the property that the boundary
of S is continuously differentiable at v. The internal tangent halfplane HS(v)
is the closed halfplane whose boundary is tangent to ∂S at v and whose
interior does not contain any points of the strict concavity (see Figure 2.3).

The following result presents an interesting property of allowable environ-
ments. Its proof is left to the reader.

Lemma 2.1 (Contraction of allowable environments). Given an al-
lowable environment S, the δ-contraction Sδ is also allowable for sufficiently
small δ ∈ R>0 and does not have isolated strictly concave points. Further-
more, the boundary of Sδ is continuously differentiable at the concavities.

Lemma 2.1 implies that the internal tangent halfplane is well-defined at
any strict concavity of the δ-contraction Sδ.

A set S ⊂ X is relatively convex in X ⊂ R
d if, for any two points p,

q in S, the shortest curve in X that connects p and q is contained in S.
Relatively convex sets in R

d are just convex sets. The relative convex hull
of a set S in X is the smallest (with respect to the operation of inclusion)
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HS(v) v

p1

p2 p3

p4

p5

p6

Figure 2.3 An allowable environment S. The curved portion of the boundary is a concave
arc. The vertices whose interior angle is 3π/2 radians are isolated strictly
concave points. The relative convex hull of {p1, . . . , p6} in S is depicted in
light gray. Finally, the dashed line represents the boundary of the internal
tangent halfplane HS(v) tangent to ∂S at v.

relatively convex set in X that contains S (see Figure 2.3). We denote the
relative convex hull of S in X by rco(S;X). The (relative) perimeter of S
in X is the length of the shortest measurable closed curve contained in X
that encloses S.

2.1.3 Geometric centers

Let X = R
d, X = S

d or X = R
d1 × S

d2 , d = d1 + d2. Recall our convention
(cf., Section 1.1.2) that, unless otherwise noted, R

d is endowed with the
Euclidean distance, S

d is endowed with the geodesic distance, and R
d1 ×S

d2

is endowed with the Cartesian product distance (dist2,distg).

The circumcenter of a bounded set S ⊂ X, denoted by CC(S), is the cen-
ter of the closed ball of minimum radius that contains S. The circumradius
of S, denoted by CR(S), is the radius of this ball1. The circumcenter is
always unique.

The computation of the circumcenter and the circumradius of a polytope
Q ⊂ R

d is a strictly convex problem and, in particular, a quadratically
constrained linear program in p (the center) and r (the radius). It consists
of minimizing the radius r of the ball centered at p subject to the constraints
that the distance between q and each of the polygon vertices is smaller than

1Note that the definition of circumcenter given here is in general different from the classical
notion of circumcenter of a triangle, that is, the center of the circle passing through the three
vertices of the triangle.
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or equal to r. Formally, the problem can be expressed as

minimize r ,

subject to ‖q − p‖2
2 ≤ r2, for all q ∈ Ve(Q). (2.1.1)

Next, we summarize some useful properties of the circumcenter in Euclidean
space; see Exercise E2.1 for their proofs. In the following result, for S ∈
F(Rd) with d = 1, we let Ve(co(S)) denote the set of extreme points of the
interval co(S).

Lemma 2.2 (Properties of the circumcenter in Euclidean space).
Let S = {p1, . . . , pn} ∈ F(Rd) with n ≥ 2. The following properties hold:

(i) CC(S) ∈ co(S) \ Ve(co(S)); and

(ii) if p ∈ co(S) \ {CC(S)} and r ∈ R>0 are such that S ⊂ B(p, r),
then ]p,CC(S)[ has a nonempty intersection with B(p+q

2 , r
2) for all

q ∈ co(S).

Figure 2.4 The circumcenter and circumradius (left), and incenter and inradius (right) of
a convex polygon.

Given X = R
d, X = S

d or X = R
d1 × S

d2 , d = d1 + d2, the incenter,
or Chebyshev center of a compact set S ⊂ X, denoted by IC(S), is the set
containing the centers of all closed balls of maximum radius contained in S.
The inradius of S, denoted by IR(S), is the common radius of any of these
balls.

The computation of the incenter and the inradius of a polytope Q ⊂ R
d is

a convex problem and, in particular, a linear program in p and r. It consists
of maximizing the radius r of the ball centered at p subject to the constraints
that the distance between p and each of the polytope facets is greater than
or equal to r. Formally, the problem can be expressed as follows. For each
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f ∈ Fa(Q), select a point qf ∈ Q belonging to f . Then, we set

maximize r ,

subject to (qf − p) · nout ≥ r , for all f ∈ Fa(Q), (2.1.2)

where nout denotes the normal to the face f pointing toward the exterior of
the polytope. The incenter of a polytope is not necessarily unique (consider,
for instance, the case of a rectangle).

In Euclidean space, X = R
d, we refer to a bounded measurable function

φ : R
d → R≥0 as a density on R

d. The (generalized) area and the centroid
(also called center of mass) of a bounded measurable set S ⊂ R

d with respect
to φ, denoted by Aφ(S) and CMφ(S) respectively, are given by

Aφ(S) =

∫

S

φ(q)dq, CMφ(S) =
1

Aφ(S)

∫

S

qφ(q)dq.

When the function φ that is being used is clear from the context, we simply
refer to the area and the centroid of S. The centroid can alternatively be
defined as follows. Define the polar moment of inertia of S about p ∈ S by

Jφ(S, p) =

∫

S

‖q − p‖2
2φ(q)dq.

Then, the centroid of S is precisely the point p ∈ S that minimizes the polar
moment of inertia of S about p. This can be easily seen from the Parallel
Axis Theorem (Hibbeler, 2006), which states that

Jφ(S, p) = Jφ(S,CMφ(S)) + Aφ(S)‖p− CMφ(S)‖2
2.

Remark 2.3 (Computation of geometric centers in the plane). The
circumcenter, incenter, and centroid of a polygon can be computed in several
ways. A simple procedure to compute the circumcenter consists of enumer-
ating all pairs and triplets of vertices of the polygon, computing the centers
and radiuses of the balls passing through them, and selecting the ball with
the smallest radius that encloses the polygon. An alternative, more effi-
cient, way of computing the circumcenter is to use the formulation (2.1.1).
A convex quadratically constrained linear program is a particular case of a
semidefinite-quadratic-linear program (SQLP). Several freely available nu-
merical packages exist to solve SQLP problems; for example, SDPT3 (Tu-
tuncu et al., 2003). The computation of the incenter set of a polygon can
be performed via linear programming using the formulation (2.1.2). Finally,
the centroid of a polygon can be computed with any numerical routine that
accurately approximates the integral of a function over a planar domain. •
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2.1.4 Voronoi and range-limited Voronoi partitions

A partition of a set S is a subdivision of S into connected subsets that are
disjoint except for their boundary. Formally, a partition of S is a collection
of closed connected sets {W1, . . . ,Wm} ⊂ P(S) that verify

S = ∪m
i=1Wi and int(Wj)∩ int(Wk) = ∅,

for j, k ∈ {1, . . . ,m}.

Definition 2.4 (Voronoi partition). Given a distance function dist :
X × X → R≥0, a set S ⊂ X and n distinct points P = {p1, . . . , pn} in S,
the Voronoi partition of S generated by P is the collection of sets V(P) =
{V1(P), . . . , Vn(P)} ⊂ P(S) defined by, for each i ∈ {1, . . . , n},

Vi(P) = {q ∈ S | dist(q, pi) ≤ dist(q, pj), for all pj ∈ P \ {pi}}. •

In other words, Vi(P) is the set of the points of S that are closer to pi

than to any of the other points in P. We refer to Vi(P) as the Voronoi cell
of pi. Unless explicitly noted otherwise, we compute the Voronoi partition
according to the following conventions:

• for X = R
d, with respect to the Euclidean distance;

• for X = S
d, with respect to the geodesic distance; and

• for X = R
d1 × S

d2 , d1 + d2 = d, with respect to the Cartesian product
distance determined by dist2 on R

d1 and distg on S
d2 .

Figure 2.5 shows an example of the Voronoi partition of the circle gener-
ated by five points. In the Euclidean case, the Voronoi cell of pi is equal to
the intersection of half-spaces determined by pi and the other locations in
P, and as such it is a convex polytope. The left plot in Figure 2.6 shows
an example of the Voronoi partition of a convex polygon generated by 40
points.

Definition 2.5 (r-limited Voronoi partition). Given a distance function
dist : X ×X → R≥0, a set S ⊂ X, n distinct points P = {p1, . . . , pn} in S,
and a positive real number r ∈ R>0, the r-limited Voronoi partition inside
S generated by P is the collection of sets Vr(P) = {V1,r(P), . . . , Vn,r(P)} ⊂
P(S) defined by

Vi,r(P) = Vi(P)∩B(pi, r), i ∈ {1, . . . , n}. •

Note that the r-limited Voronoi partition inside S is precisely the Voronoi
partition of the set ∪n

i=1B(pi, r)∩S. We will refer to Vi,r(P) as the r-limited
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Figure 2.5 Voronoi partition of the circle generated by five points. The dashed segments
correspond to the Voronoi cells of each individual point.

Figure 2.6 Voronoi partition of a convex polygon (left) and r-limited Voronoi partition
inside a convex polygon (right) generated by 40 points.

Voronoi cell of pi. The right-hand plot in Figure 2.6 shows an example of the
r-limited Voronoi partition inside a convex polygon generated by 40 points.

Let X = R
d, X = S

d or X = R
d1 × S

d2 , d = d1 + d2. Given a density φ
on X, a set of n distinct points P = {p1, . . . , pn} in S ⊂ X is:

(i) A centroidal Voronoi configuration if each point is the centroid of
its own Voronoi cell, that is, pi = CMφ(Vi(P)).

(ii) An r-limited centroidal Voronoi configuration, for r ∈ R>0, if each
point is the centroid of its own r-limited Voronoi cell, that is, pi =
CMφ(Vi,r(P)). If r ≥ diam(S), then an r-limited centroidal Voronoi
configuration is a centroidal Voronoi configuration.

(iii) A circumcenter Voronoi configuration if each point is the circum-
center of its own Voronoi cell, that is, pi = CC(Vi(P)).

(iv) An incenter Voronoi configuration if each point is an incenter of its
own Voronoi cell, that is, pi ∈ IC(Vi(P)).
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Figure 2.7 illustrates of the various notions of center Voronoi configurations.

Figure 2.7 From left to right, centroidal, r-limited centroidal, circumcenter, and incenter
Voronoi configurations composed by 16 points in a convex polygon. Darker
blue-colored areas correspond to higher values of the density φ.

2.2 PROXIMITY GRAPHS

Roughly speaking, a proximity graph is a graph whose vertex set is a set of
distinct points and whose edge set is a function of the relative locations of
the point set. Proximity graphs appear in computational geometry. In this
section, we study this important notion in detail following the presentation
by Cortés et al. (2005).

Definition 2.6 (Proximity graph). Assume that X is a d-dimensional
space chosen among R

d, S
d, and the Cartesian products R

d1 × S
d2 , for some

d1 + d2 = d. For a set S ⊂ X, let G(S) be the set of all undirected graphs
whose vertex set is an element of F(S). A proximity graph G : F(S) → G(S)
associates to a set of distinct points P = {p1, . . . , pn} ⊂ S an undirected
graph with vertex set P and whose edge set is given by EG(P) ⊆ {(p, q) ∈
P × P | p 6= q}. •

Note that in a proximity graph a point cannot be its own neighbor. From
this definition, we observe that the distinguishing feature of proximity graphs
is that their edge sets change with the location of their vertices. It is also
possible to define proximity graphs that associate to each point set a digraph,
but we will not consider them here.

Examples of proximity graphs on X, where we recall that dist = dist2 if
X = R

d, dist = distg if X = S
d, and dist = (dist2,distg) if X = R

d1 × S
d2 ,

include the following:

(i) The complete graph Gcmplt where any two points are neighbors.
When convenient, we may view the complete graph as weighted
by assigning the weight dist(pi, pj) to the edge (pi, pj) ∈ EGcmplt

(P).

(ii) The r-disk graph Gdisk(r), for r ∈ R>0, where two points are neigh-
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bors if they are located within a distance r, that is, (pi, pj) ∈
EGdisk(r)(P) if dist(pi, pj) ≤ r.

(iii) The Delaunay graph GD, where two points are neighbors if their
corresponding Voronoi cells intersect, that is, (pi, pj) ∈ EGD

(P) if
Vi(P) ∩ Vj(P) 6= ∅.

(iv) The r-limited Delaunay graph GLD(r), for r ∈ R>0, where two points
are neighbors if their corresponding r

2 -limited Voronoi cells intersect,
that is, (pi, pj) ∈ EGLD(r)(P) if Vi, r

2
(P)∩Vj, r

2
(P) 6= ∅.

(v) The relative neighborhood graph GRN, where two points are neigh-
bors if their associated open lune (cf. Section 1.1.2) does not contain
any point in P, that is, (pi, pj) ∈ EGRN

(P) if, for all pk ∈ P, k 6∈ {i, j}

pk 6∈ B(pi,dist(pi, pj))∩B(pj ,dist(pi, pj)).

Figure 2.8 shows examples of these proximity graphs in the plane.

(a) Gcmplt (b) Gdisk(r) (c) GD

(d) GLD(r) (e) GRN

Figure 2.8 Proximity graphs in R
2. From left to right, in the first row, complete, r-

disk, and Delaunay, and in the second row, r-limited Delaunay and relative
neighborhood for a set of 15 points. When appropriate, the geometric objects
determining the edge relationship are plotted in lighter gray.

Additional examples of proximity graphs in the Euclidean space include
the following:

15
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(vi) The Gabriel graph GG, where two points are neighbors if the ball
centered at their midpoint and passing through both of them does
not contain any point in P, that is, (pi, pj) ∈ EGG

(P) if pk 6∈

B
(pi+pj

2 , dist(pi,pj)
2

)

for all pk ∈ P.

(vii) The r-∞-disk graph G∞-disk(r), for r ∈ R>0, where two points are
neighbors if they are located within L∞-distance r, that is, (pi, pj) ∈
EG∞-disk(r)(P) if dist∞(pi, pj) ≤ r.

(viii) The Euclidean minimum spanning tree of a proximity graph G, de-
noted by GEMST,G , that assigns to each P a minimum-weight span-
ning tree (cf., Section 1.4.4.4) of G(P) with weighted adjacency ma-
trix aij = ‖pi − pj‖2, for (pi, pj) ∈ EG(P). If G(P) is not connected,
then GEMST,G(P) is the union of Euclidean minimum spanning trees
of its connected components. When G is the complete graph, we
simply denote the Euclidean minimum spanning tree by GEMST.

(ix) the visibility graph Gvis,Q in an allowable environment Q in R
2,

where two points are neighbors if they are visible to each other,
that is, (pi, pj) ∈ EGvis,Q

(P) if the closed segment [pi, pj ] from pi to
pj is contained in Q.

(x) The range-limited visibility graph Gvis-disk,Q in an allowable environ-
ment Q in R

2, where two points are neighbors if they are visible to
each other and their distance is no more than r, that is, (pi, pj) ∈
EGvis-disk,Q

(P) if (pi, pj) ∈ EGvis,Q
(P) and (pi, pj) ∈ EGdisk(r)(P).

Figure 2.9 shows examples of these proximity graphs in the plane; Fig-
ure 2.10 shows examples of these proximity graphs in a planar nonconvex
environment; and Figure 2.11 shows example graphs in three-dimensions.

(a) GG (b) G∞-disk(r) (c) GEMST

Figure 2.9 Proximity graphs in R
2. From left to right, Gabriel graph, r-∞-disk graph, and

Euclidean minimum spanning tree for 15 points. In two images, the geometric
objects determining the edge relationship are plotted in light gray.

As for standard graphs, let us alternatively describe the edge set by means
of the sets of neighbors of the individual graph vertices. To each proximity
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(a) Gvis,Q (b) Gvis-disk,Q

Figure 2.10 The visibility and range-limited visibility graphs for 8 agents in an allowable
environment. The geometric objects determining the edge relationship are
plotted in light gray.

(a) Gdisk(r) (b) GG (c) GRN

Figure 2.11 Proximity graphs in R
3. From left to right, r-disk, relative neighborhood,

and Gabriel graphs for a set of 25 points.

graph G, each p ∈ X and each P = {p1, . . . , pn} ∈ F(X), we associate the
set of neighbors map NG : X × F(X) → F(X) defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪{p})}.

Typically, p is a point in P, but the definition is well-posed for any p ∈
X. Under the assumption that P does not contain repeated elements, the
definition will not lead to counterintuitive interpretations later. Given p ∈
X, it is convenient to define the map NG,p : F(X) → F(X) by NG,p(P) =
NG(p,P).

A proximity graph G1 is a subgraph of a proximity graph G2, denoted G1 ⊂
G2, if G1(P) is a subgraph of G2(P) for all P ∈ F(X). The following result,
whose proof is given in Section 2.5.1, summarizes the subgraph relationships
in the Euclidean case among the various proximity graphs introduced above.

Theorem 2.7 (Subgraph relationships among some standard prox-
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imity graphs on R
d). For r ∈ R>0, the following statements hold:

(i) GEMST ⊂ GRN ⊂ GG ⊂ GD; and

(ii) GG ∩Gdisk(r) ⊂ GLD(r) ⊂ GD ∩Gdisk(r).

Note that the inclusion GLD(r) ⊂ GD ∩Gdisk(r) is in general strict; this
counterintuitive fact is discussed in Exercise E2.3. Additionally, since GEMST

is by definition connected, Theorem 2.7(i) implies that GRN, GG, and GD are
connected. The connectivity properties of Gdisk(r) are characterized in the
following result.

Theorem 2.8 (Connectivity properties of some standard proximity
graphs on R

d). For r ∈ R>0, the following statements hold:

(i) GEMST ⊂ Gdisk(r) if and only if Gdisk(r) is connected; and

(ii) GEMST ∩Gdisk(r), GRN ∩Gdisk(r), GG ∩Gdisk(r) and GLD(r) have the
same connected components as Gdisk(r) (i.e., for all point sets P ∈
F(Rd), all graphs have the same number of connected components
consisting of the same vertices).

The proof of this theorem is given in Section 2.5.1. Note that in Theo-
rem 2.8, fact (ii) implies (i).

2.2.1 Spatially distributed proximity graphs

We now consider the following loosely stated question: When does a given
proximity graph encode sufficient information to compute another proximity
graph? For instance, if a node knows the position of its neighbors in the
complete graph (i.e., of every other node in the graph), then it is clear that
the node can compute its neighbors with respect to any proximity graph.
Let us formalize this idea. A proximity graph G1 is spatially distributed over
a proximity graph G2 if, for all p ∈ P,

NG1,p(P) = NG1,p

(

NG2,p(P)
)

,

that is, any node informed about the location of its neighbors with respect
to G2 can compute its set of neighbors with respect to G1.

Clearly, any proximity graph is spatially distributed over the complete
graph. It is straightforward to deduce that if G1 is spatially distributed over
G2, then G1 is a subgraph of G2. The converse is in general not true. For
instance, GD ∩ Gdisk(r) is a subgraph of Gdisk(r), but GD ∩ Gdisk(r) is not
spatially distributed over Gdisk(r); see Exercise E2.4.
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The following result identifies proximity graphs which are spatially dis-
tributed over Gdisk(r).

Proposition 2.9 (Spatially distributed graphs over the disk graph).
The proximity graphs GRN ∩Gdisk(r), GG ∩Gdisk(r), and GLD(r) are spatially
distributed over Gdisk(r).

Remark 2.10 (Computation of the Delaunay graph over the r-disk
graph). In general, for a fixed r ∈ R>0, GD is not spatially distributed over
Gdisk(r). However, for a given P ∈ F(X), it is always possible find r such
that GD(P ) is spatially distributed over Gdisk(r)(P). This is a consequence
of the following observations. Given P ∈ F(X), define the convex sets

W (pi, r) = B(pi, r) ∩
(

∩‖pi−pj‖≤r Hpi,pj

)

, i ∈ {1, . . . , n},

where we recall thatHp,x is the half-space of points q in R
d with the property

that ‖q− p‖2 ≤ ‖q−x‖2. Note that the intersection B(pi, r)∩Vi is a subset
of W (pi, r). Provided that r is twice as large as the maximum distance
between pi and the vertices of W (pi, r), then all Delaunay neighbors of pi

are within distance r from pi. Equivalently, the half-space Hpi,p determined
by pi and a point p outside B(pi, r) does not intersect W (pi, r). Therefore,
the equality Vi = W (pi, r) holds. For node i ∈ {1, . . . , n}, the minimum
adequate radius is then

ri,min = 2 max{‖pi − q‖2 | q ∈W (pi, ri,min)}.

The minimum adequate radius across the overall network is then rmin =
maxi∈{1,...,n} ri,min. The algorithm presented in Cortés et al. (2004) builds
on these observations to compute the Voronoi partition of a bounded set
generated by a pointset in a distributed way. •

2.2.2 The locally cliqueless graph of a proximity graph

Given a proximity graph, it is sometimes useful to construct another prox-
imity graph that has fewer edges and the same number of connected compo-
nents. This is certainly the case when optimizing multi-agent cost functions
in which the proximity graph edges describe pairwise constraints between
agents. Additionally, the construction of the new proximity graph should
be spatially distributed over the original proximity graph. Here, we present
the notion of locally cliqueless graph of a proximity graph.

Let G be a proximity graph in the Euclidean space. The locally cliqueless
graph Glc,G of G is the proximity graph defined by: (pi, pj) ∈ EGlc,G

(P) if
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Figure 2.12 Locally cliqueless graph Glc,Gvis,Q
of the visibility graph Gvis,Q for the node

configuration shown in Figure 2.9(d).

(pi, pj) ∈ EG(P) and

(pi, pj) ∈ EGEMST
(P ′),

for any maximal clique P ′ of (pi, pj) in G. Figure 2.12 shows an illustration
of this notion. The properties of this construction are summarized in the
following result; for the proof, see Ganguli et al. (2009).

Theorem 2.11 (Properties of the locally cliqueless graph). Let G be
a proximity graph in the Euclidean space. Then, the following statements
hold:

(i) GEMST,G ⊆ Glc,G ⊆ G;

(ii) Glc,G has the same connected components as G; and

(iii) for G = Gdisk(r), Gvis,Q, and Gvis-disk,Q, where r ∈ R>0 and Q is an
allowable environment, Glc,G is spatially distributed over G.

In general, the inclusions in Theorem 2.11(i) are strict.

2.2.3 Proximity graphs over tuples of points

The notion of proximity graph is defined for sets of distinct points P =
{p1, . . . , pn}. However, we will be interested in considering tuples of elements
of X of the form P = (p1, . . . , pn), where pi corresponds to the position of
an agent i of a robotic network. In principle, note that the tuple P might
contain coincident points. In order to reconcile this mismatch between sets
and tuples, we will do the following.

Let iF : Xn → F(X) be the natural immersion of Xn into F(X), that
is, iF(P ) is the point set that contains only the distinct points in P =
(p1, . . . , pn). Note that iF is invariant under permutations of its arguments
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and that the cardinality of iF(p1, . . . , pn) is in general less than or equal to
n. In what follows, P = iF(P ) will always denote the point set associated
to P ∈ Xn. Using the natural inclusion, the notion of proximity graphs can
be naturally extended as follows: given G, we define (with a slight abuse of
notation)

G = G ◦ iF : Xn → G(X).

Additionally, we define the set of neighbors map NG : X ×Xn → F(X) by

NG(p, (p1, . . . , pn)) = NG(p, iF(p1, . . . , pn)).

According to this definition, coincident points in the tuple (p1, . . . , pn) will
have the same set of neighbors. As before, it is convenient to define the
shorthand notation NG,p : Xn → F(X), NG,p(P ) = NG(p, P ) for p ∈ X.

2.2.4 Spatially distributed maps

Given a set Y and a proximity graph G, a map T : Xn → Y n is spatially
distributed over G if there exists a map T̃ : X×F(X) → Y , with the property
that, for all (p1, . . . , pn) ∈ Xn and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,pj
(p1, . . . , pn)),

where Tj denotes the jth component of T . In other words, the jth compo-
nent of a spatially distributed map at (p1, . . . , pn) can be computed with only
knowledge of the vertex pj and the neighboring vertices in the undirected
graph G(P ).

When studying coordination tasks and coordination algorithms, it will be
relevant to characterize the spatially distributed features of functions, vector
fields, and set-valued maps with respect to suitable proximity graphs.

Remark 2.12 (Relationship with the notion of spatially distributed
graphs). Note that the proximity graph G1 is spatially distributed over the
proximity graph G2 if and only if the map

P ∈ Xn 7→ (NG1,p1
(P ), . . . ,NG1,pn

(P )) ∈ F(X)n

is spatially distributed over G2. •

2.3 GEOMETRIC OPTIMIZATION PROBLEMS AND

MULTICENTER FUNCTIONS

In this section we consider various interesting geometric optimization prob-
lems. By geometric optimization, we mean an optimization problem induced
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by a collection of geometric objects (see Boltyanski et al., 1999). We shall
pay particular attention to facility location problems, in which service sites
are spatially allocated to fulfill a particular request.

2.3.1 Expected-value multicenter functions

Let S ⊂ R
d be a bounded environment of interest, and consider a density

function φ : R
d → R≥0. For the discussion of this section, only the value of

φ restricted to S is of interest. One can regard φ as a function measuring the
probability that some event takes place over the environment. The larger
the value of φ(q), the more important the location q is. We refer to a non-
increasing and piecewise continuously differentiable function f : R≥0 → R,
possibly with finite jump discontinuities, as a performance. Performance
functions describe the utility of placing a node at a certain distance from
a location in the environment. The smaller the distance, the larger the
value of f , that is, the better the performance. For instance, in servicing
problems, performance functions can encode the travel time or the energy
expenditure required to service a specific destination. In sensing problems,
performance functions can encode the signal-to-noise ratio between a source
with an unknown location and a sensor attempting to locate it.

Given a bounded measurable set S ⊂ R
d, a density function φ, and a

performance function f , let us consider the expected value of the coverage
over any point in S provided by a set of points p1, . . . , pn. Formally, we
define the expected-value multicenter function Hexp : Sn → R by

Hexp(p1, . . . , pn) =

∫

S

max
i∈{1,...,n}

f(‖q − pi‖2)φ(q)dq. (2.3.1)

The definition of Hexp can be interpreted as follows: for each location q ∈ S,
consider the best coverage of q among those provided by each of the nodes
p1, . . . , pn, which corresponds to the value maxi∈{1,...,n} f(‖q − pi‖2). Then,
evaluate the performance by the importance φ(q) of the location q. Finally,
sum the resulting quantity over all the locations of the environment S, to
obtain Hexp(p1, . . . , pn) as a measure of the overall coverage provided by
p1, . . . , pn.

Given the meaning of Hexp, we seek to solve the following geometric op-
timization problem:

maximize Hexp(p1, . . . , pn), (2.3.2)

that is, we seek to determine a set of configurations p1, . . . , pn that maximize
the value of the multicenter function Hexp. An equivalent formulation of this
problem is referred to as a continuous p-median problem in the literature
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on facility location (see, e.g., Drezner, 1995). In our discussion, we will
pay special attention to the case when n = 1, which we term the 1-center
problem. For the purpose of solving (2.3.2), note that we can assume that
the performance function satisfies f(0) = 0. This can be done without loss
of generality, since for any c ∈ R, one has

∫

S

max
i∈{1,...,n}

(f(‖q − pi‖2) + c)φ(q)dq = Hexp(p1, . . . , pn) + cAφ(S).

The expected-value multicenter function can be alternatively described in
terms of the Voronoi partition of S generated by P = {p1, . . . , pn}. Let us
define the set

Scoinc = {(p1, . . . , pn) ∈ (Rd)n | pi = pj for some i 6= j},

consisting of tuples of n points, where some of them are repeated. Then, for
(p1, . . . , pn) ∈ Sn \ Scoinc, one has

Hexp(p1, . . . , pn) =

n
∑

i=1

∫

Vi(P)
f(‖q − pi‖2)φ(q)dq. (2.3.3)

This expression of Hexp is appealing because it clearly shows the result of
the overall coverage of the environment as the aggregate contribution of all
individual nodes. If (p1, . . . , pn) ∈ Scoinc, then a similar decomposition of
Hexp can be written in terms of the distinct points P = iF(p1, . . . , pn).

Inspired by the expression (2.3.3), let us define a more general version
of the expected-value multicenter function. Given (p1, . . . , pn) ∈ Sn and a
partition {W1, . . . ,Wn} ⊂ P(S) of S, let

Hexp(p1, . . . , pn,W1, . . . ,Wn) =
n

∑

i=1

∫

Wi

f(‖q − pi‖2)φ(q)dq. (2.3.4)

Notice that Hexp(p1, . . . , pn) = Hexp(p1, . . . , pn, V1(P), . . . , Vn(P)), for all
(p1, . . . , pn) ∈ Sn \ Scoinc. Moreover, one can establish the following opti-
mality result (see Du et al., 1999).

Proposition 2.13 (Hexp-optimality of the Voronoi partition). Let
P = {p1, . . . , pn} ∈ F(S). For any performance function f and for any
partition {W1, . . . ,Wn} ⊂ P(S) of S,

Hexp(p1, . . . , pn, V1(P), . . . , Vn(P)) ≥ Hexp(p1, . . . , pn,W1, . . . ,Wn),

and the inequality is strict if any set in {W1, . . . ,Wn} differs from the cor-
responding set in {V1(P), . . . , Vn(P)} by a set of positive measure. In other
words, the Voronoi partition V(P) is optimal for Hexp among all partitions
of S.
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Proof. Assume that, for i 6= j ∈ {1, . . . , n}, the set int(Wi)∩ int(Vj(P)) has
strictly positive measure. For all q ∈ int(Wi)∩ int(Vj(P)), we know that
‖q−pi‖2 > ‖q−pj‖2. Because f is non-increasing, f(‖q−pi‖2) < f(‖q−pj‖2)
and, since int(Wi)∩ int(Vj(P)) has strictly positive measure,
∫

int(Wi)∩ int(Vj(P))
f(‖q−pi‖2)φ(q)dq <

∫

int(Wi)∩ int(Vj(P))
f(‖q−pj‖2)φ(q)dq.

Therefore, we deduce

∫

Wi

f(‖q − pi‖2)φ(q)dq <
n

∑

j=1

∫

Wi ∩Vj(P)
f(‖q − pj‖2)φ(q)dq,

and the statements follow. �

Different performance functions lead to different expected-value multicen-
ter functions. Let us examine some important cases.

Distortion problem: Consider the performance function f(x) = −x2.
Then, on Sn \ Scoinc, the expected-value multicenter function takes
the form

Hdist(p1, . . . , pn) = −
n

∑

i=1

∫

Vi(P )
‖q − pi‖

2
2φ(q)dq = −

n
∑

i=1

Jφ(Vi(P), pi),

where recall that Jφ(W,p) denotes the polar moment of inertia of the
set W about the point p. In signal compression −Hdist is referred to
as the distortion function and is relevant in many disciplines including
vector quantization, signal compression, and numerical integration (see
Gray and Neuhoff, 1998; Du et al., 1999). Here, distortion refers to the
average deformation (weighted by the density φ) caused by reproduc-
ing q ∈ S with the location pi in P = {p1, . . . , pn} such that q ∈ Vi(P).
It is interesting to note that

Hdist(p1, . . . , pn,W1, . . . ,Wn) = −
n

∑

i=1

Jφ(Wi, pi)

= −
n

∑

i=1

Jφ(Wi,CMφ(Wi)) −
n

∑

i=1

Aφ(Wi)‖pi − CMφ(Wi)‖
2
2, (2.3.5)

where in the last equality we have used the Parallel Axis Theorem (Hi-
bbeler, 2006). Note that the first term only depends on the partition
of S, whereas the second term also depends on the location of the
points. The following result is a consequence of this observation.
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Proposition 2.14 (Hdist-optimality of centroid locations). Let
{W1, . . . ,Wn} ⊂ P(S) be a partition of S. Then, for any set points
P = {p1, . . . , pn} ∈ F(S),

Hdist

(

CMφ(W1), . . . ,CMφ(Wn),W1, . . . ,Wn

)

≥ Hdist(p1, . . . , pn,W1, . . . ,Wn),

and the inequality is strict if there exists i ∈ {1, . . . , n} for which Wi

has non-vanishing area and pi 6= CMφ(Wi). In other words, the cen-
troid locations CMφ(W1), . . . ,CMφ(Wn) are optimal for Hdist among
all configurations in S.

A consequence of this result is that for the 1-center problem, that
is, when n = 1, the node location that optimizes p 7→ Hdist(p) =
− Jφ(S, p) is the centroid of the set S, denoted by CMφ(S).

Area problem: For a ∈ R>0, consider the performance function f(x) =
1[0,a](x), that is, the indicator function of the closed interval [0, a].
Then, the expected-value multicenter function takes the form

Harea,a(p1, . . . , pn) =

n
∑

i=1

∫

Vi(P)
1[0,a](‖q − pi‖2)φ(q)dq

=
n

∑

i=1

∫

Vi(P)∩B(pi,a)
φ(q)dq

=
n

∑

i=1

Aφ(Vi(P)∩B(pi, a)) = Aφ(∪n
i=1B(pi, a)),

that is, it corresponds to the area, measured according to φ, covered by
the union of the n balls B(p1, a), . . . , B(pn, a). Exercise E2.5 discusses
the 1-center area problem.

Mixed distortion-area problem: For a ∈ R>0 and b ≤ −a2, consider
the performance function f(x) = −x2 1[0,a](x) + b · 1]a,+∞[(x). Then,
on Sn \ Scoinc, the expected-value multicenter function takes the form

Hdist-area,a,b(p1, . . . , pn) = −
n

∑

i=1

Jφ(Vi,a(P), pi) + bAφ(Q \ ∪n
i=1B(pi, a)),

that is, it is a combination of the multicenter functions corresponding
to the distortion problem and the area problem. Of special interest to
us is the multicenter function that results from the choice b = −a2.
In this case, the performance function f is continuous, and we simply
write Hdist-area,a. The extension of this function to sets of points and
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partitions of the space reads as follows:

Hdist-area,a(p1, . . . , pn,W1, . . . ,Wn)

= −
n

∑

i=1

(

Jφ(Wi ∩B(pi, a), pi) + a2 Aφ(Wi ∩ (S \B(pi, a)))
)

.

We leave the proof of the following optimality result as a guided exer-
cise for the reader (see Exercise E2.10).

Proposition 2.15 (Hdist-area,a-optimality of centroid locations).
Let {W1, . . . ,Wn} ⊂ P(S) be a partition of S. Then, for any P =
{p1, . . . , pn} ∈ F(S),

Hdist-area,a

(

q∗1, . . . , q
∗
n,W1, . . . ,Wn

)

≥ Hdist-area,a(p1, . . . , pn,W1, . . . ,Wn),

where we have used the shorthands q∗i = CMφ(Wi ∩ B(pi, a)), for i ∈
{1, . . . , n}. Furthermore, the inequality is strict if there exists i ∈
{1, . . . , n} for which Wi has non-vanishing area and pi 6= q∗i .

A consequence of this result is that for the 1-center problem, that is,
when n = 1—the node location that optimizes p 7→ Hdist-area,a(p) =

Jφ(S ∩ B(p, a), p) + a2 Aφ(S \ B(p, a)) is the centroid of the set S ∩
B(p, a), denoted by CMφ(S ∩B(p, a)).

Next, we characterize the smoothness of the expected-value multicenter
function. Before stating the precise result, let us introduce some useful
notation. For a performance function f , let Dscn(f) denote the (finite) set
of points where f is discontinuous. For each a ∈ Dscn(f), define the limiting
values from the left and from the right, respectively, as

f−(a) = lim
x→a−

f(x), f+(a) = lim
x→a+

f(x).

We are now ready to characterize the smoothness of Hexp, whose proof is
given in Section 2.5.3. Before stating the result, recall that the line integral
of a function g : R

2 → R over a curve C parameterized by a continuous and
piecewise continuously differentiable map γ : [0, 1] → R

2 is defined by
∫

C

g =

∫

C

g(γ)dγ :=

∫ 1

0
g(γ(t)) ‖γ̇(t)‖2 dt,

and is independent of the selected parameterization.

Theorem 2.16 (Smoothness properties of Hexp). Given a set S ⊂ R
d

that is bounded and measurable, a density φ : R → R≥0, and a performance
function f : R≥0 → R, the expected-value multicenter function Hexp : Sn →
R is
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(i) globally Lipschitz2 on Sn; and

(ii) continuously differentiable on Sn \ Scoinc, where for i ∈ {1, . . . , n}

∂Hexp

∂pi
(P ) =

∫

Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq

+
∑

a∈Dscn(f)

(

f−(a) − f+(a)
)

∫

Vi(P)∩ ∂B(pi,a)
nout(q)φ(q)dq, (2.3.6)

where nout is the outward normal vector to B(pi, a). Therefore, the gradient
of Hexp, interpreted as a map from Sn to R

n, is spatially distributed (in the
sense defined in Section 2.2.4) over the Delaunay graph GD.

Let us discuss how Theorem 2.16 particularizes to the distortion, area,
and mixed distortion-area problems.

Distortion problem: In this case, the performance function does not have
any discontinuities and, therefore, the second term in (2.3.6) vanishes.
The gradient of Hdist on Sn \ Scoinc then takes the form, for each
i ∈ {1, . . . , n},

∂Hdist

∂pi
(P ) = 2 Aφ(Vi(P))(CMφ(Vi(P)) − pi),

that is, the ith component of the gradient points in the direction of
the vector going from pi to the centroid of its Voronoi cell. The critical
points of Hdist are therefore the set of centroidal Voronoi configurations
in S (cf. Section 2.1.4). This is a natural generalization of the result
for the 1-center case, where the optimal node location is the centroid
CMφ(S).

Area problem: In this case, the performance function is differentiable ev-
erywhere except at a single discontinuity, and its derivative is identi-
cally zero. Therefore, the first term in (2.3.6) vanishes. The gradient
of Harea,a on Sn \ Scoinc then takes the form, for each i ∈ {1, . . . , n},

∂Harea,a

∂pi
(P ) =

∫

Vi(P)∩ ∂B(pi,a)
nout(q)φ(q)dq,

where nout is the outward normal vector to B(pi, a). The gradient
is an average of the normal at each point of Vi(P)∩ ∂B(pi, a), as il-
lustrated in Figure 2.13. The critical points of Harea,a correspond to
configurations with the property that each pi is a local maximum for
the area of Vi,a(P ) = Vi(P )∩B(pi, a) at fixed Vi(P ). We refer to these

2Given S ⊂ R
h, a function f : S → R

k is globally Lipschitz if there exists K ∈ R>0 such that
‖f(x − y)‖2 ≤ K‖x − y‖2 for all x, y ∈ S.
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Figure 2.13 The gradient of the area function when the density function is constant. The
component of the gradient corresponding to the rightmost node is zero; there
is no incentive for this node to move in any particular direction. The compo-
nent of the gradient for each of the three leftmost agents is non-zero; roughly
speaking, by moving along the gradient directions, these agents decrease the
overlapping among their respective disk and cover new regions of the space.

configurations as a-limited area-centered Voronoi configurations. This
is a natural generalization of the result for the 1-center case, where the
optimal node location maximizes Aφ(S ∩B(p, a)) (cf., Exercise E2.5).

Mixed distortion-area problem: In this case, the gradient of the multi-
center function Hdist-area,a,b is a combination of the gradients of Hdist

and Harea,a. Specifically, one has for each i ∈ {1, . . . , n},

∂Hdist-area,a,b

∂pi
(P ) = 2 Aφ(Vi,a(P))(CMφ(Vi,a(P)) − pi)

− (a2 + b)

∫

Vi(P)∩ ∂B(pi,a)
nout(q)φ(q)dq,

where nout is the outward normal vector to B(pi, a). For the particular
case when b = −a2, the performance function is continuous, and the
gradient of Hdist-area,a takes the simpler form

∂Hdist-area,a

∂pi
(P ) = 2 Aφ(Vi,a(P))(CMφ(Vi,a(P)) − pi),

which points in the direction of the vector from pi to the centroid of
its a-limited Voronoi cell. In this case, the critical points of Hdist-area,a

are therefore the set of a-limited centroidal Voronoi configurations in
S (cf., Section 2.1.4). This is a natural generalization of the result
for the 1-center case, where the optimal node location is the centroid
CMφ(S ∩B(p, a)).

We refer to Hdist, Harea,a, and Hdist-area,a as multicenter functions because,
as the above discussion shows, their critical points correspond to various
notions of center Voronoi configurations.
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Note that the gradients of Harea,a and Hdist-area,a,b are spatially distributed
over the 2a-limited Delaunay graph GLD(2a). This observation is important
for practical considerations: robotic agents with range-limited interactions
cannot in general compute the gradient of Hdist because, as we noted in
Remark 2.10, for a given r ∈ R>0, GD is not in general spatially distributed
over Gdisk(r). However, robotic agents with range-limited interactions can
compute the gradients of Harea,a and Hdist-area,a,b as long as r ≥ 2a because,
from Theorem 2.7(iii), GLD(r) is spatially distributed over Gdisk(r). The
relevance of this fact is further justified by the following result.

Proposition 2.17 (Constant-factor approximation of Hdist). Let S ⊂
R

d be bounded and measurable. Consider the mixed distortion-area problem
with a ∈ ]0,diamS] and b = −diam(S)2. Then, for all P ∈ Sn,

Hdist-area,a,b(P ) ≤ Hdist(P ) ≤ β2 Hdist-area,a,b(P ) < 0, (2.3.7)

where β = a
diam(S) ∈ [0, 1].

In fact, similar constant-factor approximations of the expected-value mul-
ticenter function Hexp can also be established (see Cortés et al., 2005).

2.3.2 Worst-case and disk-covering multicenter functions

Given a compact set S ⊂ R
d and a performance function f , let us consider

the point in S that is worst covered by a set of points p1, . . . , pn. Formally,
we define the worst-case multicenter function Hworst : Sn → R by

Hworst(p1, . . . , pn) = min
q∈S

max
i∈{1,...,n}

f(‖q − pi‖2). (2.3.8)

The definition of Hworst can be read as follows: for each location q ∈ S,
consider the best coverage of q among those provided by each of the nodes
p1, . . . , pn, which corresponds to the value maxi∈{1,...,n} f(‖q − pi‖2). Then,
compute the worst coverage Hworst(p1, . . . , pn) by comparing the perfor-
mance at all locations in S.

Given the interpretation of Hworst, we seek to solve the following geometric
optimization problem:

maximize Hworst(p1, . . . , pn), (2.3.9)

that is, we seek to determine configurations p1, . . . , pn that maximize the
value of Hworst. An equivalent formulation of this problem is referred to
as a continuous p-center problem in the literature on facility location (see,
e.g., Drezner, 1995).
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In the present context, also relevant is the disk-covering multicenter func-
tion Hdc : Sn → R, defined by

Hdc(p1, . . . , pn) = max
q∈S

min
i∈{1,...,n}

‖q − pi‖2. (2.3.10)

The value of Hdc can be interpreted as the largest possible distance from
a point in S to one of the locations p1, . . . , pn. Note that, by definition,
the environment S is contained in the union of n closed balls centered at
p1, . . . , pn with radius Hdc(p1, . . . , pn). The definition of Hdc is illustrated
in Figure 2.14(a).

The following result establishes the relationship between the worst-case
and the disk-covering multicenter functions, and as byproduct, provides an
elegant reformulation of the geometric optimization problem (2.3.9). Its
proof is left to the reader.

Lemma 2.18 (Relationship between Hworst and Hdc). Given S ⊂ R
d

compact and a performance function f : R≥0 → R, one has Hworst = f ◦Hdc.

Using Lemma 2.18 and the fact that f is non-increasing, we can reformu-
late the geometric optimization problem (2.3.9) as

minimize Hdc(p1, . . . , pn), (2.3.11)

that is, find the minimum radius r such that the environment S is covered by
n closed balls centered at p1, . . . , pn with equal radius r. Note the connection
between this formulation and the classical disk-covering problem: how to
cover a region with (possibly overlapping) disks of minimum radius. We
shall comment more on this connection later.

Because of the equivalence between the geometric optimization prob-
lems (2.3.9) and (2.3.11), we focus our attention on Hdc. The disk-covering
multicenter function can be alternatively described in terms of the Voronoi
partition of S generated by P = {p1, . . . , pn}. For (p1, . . . , pn) ∈ Sn \ Scoinc,

Hdc(p1, . . . , pn) = max
i∈{1,...,n}

max
q∈Vi(P)

‖q − pi‖2

= max
i∈{1,...,n}

max
q∈∂Vi(P)

‖q − pi‖2. (2.3.12)

This characterization of Hdc is illustrated in Figure 2.14(b). The expres-
sion (2.3.12) is appealing because it clearly shows the value of Hdc as the
result of the aggregate contribution of all individual nodes. If (p1, . . . , pn) ∈
Scoinc, then a similar decomposition of Hdc can be written in terms of the
distinct points P = iF(p1, . . . , pn). A node i ∈ {1, . . . , n} is called active at
(p1, . . . , pn) if maxq∈∂Vi(P) ‖q− pi‖2 = Hdc(p1, . . . , pn). A node is passive at
(p1, . . . , pn) if it is not active.
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(a) (b)

Figure 2.14 An illustration of the definition of Hdc: (a) and (b) show the same config-
uration, with and without the Voronoi configuration, respectively. For each
node, the disk is the minimum-radius disk centered at the node and enclosing
the Voronoi cell. The value of Hdc is the radius of the disk centered at the
leftmost node.

Inspired by expression (2.3.12), let us define a more general version of the
disk-covering multicenter function. Given (p1, . . . , pn) ∈ Sn and a partition
{W1, . . . ,Wn} ⊂ P(S) of S, let

Hdc(p1, . . . , pn,W1, . . . ,Wn) = max
i∈{1,...,n}

max
q∈∂Wi

‖q − pi‖2.

Note the relationship Hdc(p1, . . . , pn) = Hdc(p1, . . . , pn, V1(P), . . . , Vn(P)),
for all (p1, . . . , pn) ∈ Sn \ Scoinc. Moreover, one can establish the following
optimality result, whose proof is given in Section 2.5.4.

Proposition 2.19 (Hdc-optimality of the Voronoi partition and cir-
cumcenter locations). For any P = {p1, . . . , pn} ∈ F(S) and any parti-
tion {W1, . . . ,Wn} ⊂ P(S) of S,

Hdc(p1, . . . , pn, V1(P), . . . , Vn(P)) ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn),

that is, the Voronoi partition V(P) is optimal for Hdc among all partitions
of S, and

Hdc(CC(W1), . . . ,CC(Wn),W1, . . . ,Wn) ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn),

that is, the circumcenter locations CC(W1), . . . ,CC(Wn) are optimal for Hdc

among all configurations in S.

As a corollary of this result, we have that the circumcenter of S is a global
optimum of Hdc for the 1-center problem, that is, when n = 1. This comes
as no surprise since, in this case, the value Hdc(p) corresponds to the radius
of the minimum-radius sphere centered at p that encloses S.
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The following result characterizes the smoothness properties of the disk-
covering multicenter function; for more details and for the proof, see Cortés
and Bullo (2005).

Theorem 2.20 (Smoothness properties of Hdc). Given S ⊂ R
d com-

pact, the disk-covering multicenter function Hdc : Sn → R is globally Lips-
chitz on Sn.

The generalized gradient and the critical points of Hdc can be charac-
terized, but require a careful study based on nonsmooth analysis (Clarke,
1983). In particular, two facts taken from Cortés and Bullo (2005) are of in-
terest here. First, under certain technical conditions, one can show that the
critical points of Hdc are circumcenter Voronoi configurations. This is why
we refer to Hdc as a multicenter function. Second, the generalized gradient
of Hdc is not spatially distributed over GD. This is essentially due to the
inherent comparison among all agents that is embedded in the definition of
Hdc (via the max function).

2.3.3 Sphere-packing multicenter functions

Given a compact connected set S ⊂ R
d, imagine trying to fit inside S “max-

imally large” non-intersecting balls. Assuming that the balls are centered
at a set of points p1, . . . , pn, we aim to maximize their smallest radius. We
define the sphere-packing multicenter function Hsp : Sn → R by

Hsp(p1, . . . , pn) = min
i6=j∈{1,...,n}

{1

2
‖pi − pj‖2,dist(pi, ∂S)

}

. (2.3.13)

The definition of Hsp can be read as follows: consider the pairwise distances
between any two points pi, pj (multiplied by a factor 1/2 so that each point
can fit a ball of equal radius and these balls do not intersect), and the indi-
vidual distances from each point to the boundary of the environment. The
value of Hsp is then the smallest of all distances, guaranteeing that the union
of n open balls centered at p1, . . . , pn with radius Hsp(p1, . . . , pn) is disjoint
and contained in S. The definition of Hsp is illustrated in Figure 2.15(a).

Given the definition of Hsp, we seek to solve the following geometric op-
timization problem:

maximize Hsp(p1, . . . , pn), (2.3.14)

that is, we seek to determine configurations p1, . . . , pn that maximize the
value of Hsp. Note the connection of this formulation with the classical
sphere-packing problem: how to maximize the number of fixed-radius non-
overlapping spheres inside a region.

32

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 2: Geometric models and optimization

(a) (b)

Figure 2.15 An illustration of the definition of Hsp: (a) and (b) show the same config-
uration, with and without the Voronoi configuration, respectively. For each
node, the disk is the maximum-radius disk centered at the node and contained
in the Voronoi cell. The value of Hsp is the radius of the two equal-radius
smallest disks.

The sphere-packing multicenter function can be alternatively described
in terms of the Voronoi partition of S generated by P = {p1, . . . , pn}. For
(p1, . . . , pn) ∈ Sn \ Scoinc, one has

Hsp(p1, . . . , pn) = min
i∈{1,...,n}

min
q∈∂Vi(P)

‖q − pi‖2. (2.3.15)

This description is illustrated in Figure 2.15(b). As for the previous multi-
center functions, expression (2.3.15) is appealing because it clearly shows the
value of of Hsp as the result of the aggregate contribution of all individual
nodes. If (p1, . . . , pn) ∈ Scoinc, then a similar decomposition of Hsp exists
in terms of the distinct points P = iF(p1, . . . , pn). A node i ∈ {1, . . . , n}
is called active at (p1, . . . , pn) if minq∈∂Vi(P) ‖q − pi‖2 = Hsp(p1, . . . , pn). A
node is passive at (p1, . . . , pn) if it is not active.

Inspired by expression (2.3.15), let us define a more general version of
the sphere-packing multicenter function. Given (p1, . . . , pn) ∈ Sn and a
partition {W1, . . . ,Wn} ⊂ P(S) of S, let

Hsp(p1, . . . , pn,W1, . . . ,Wn) = min
i∈{1,...,n}

min
q∈∂Wi

‖q − pi‖2.

Note the relationship Hsp(p1, . . . , pn) = Hsp(p1, . . . , pn, V1(P), . . . , Vn(P)),
for all (p1, . . . , pn) ∈ Sn \ Scoinc. Additionally, note that the quantity
Hsp(q1, . . . , qn,W1, . . . ,Wn) is the same for any qi ∈ IC(Wi), i ∈ {1, . . . , n}.
With a slight abuse of notation, we refer to this common value using the
symbol Hsp(IC(W1), . . . , IC(Wn),W1, . . . ,Wn). Moreover, one can establish
the following optimality result (for the proof, see Section 2.5.5).
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Proposition 2.21 (Hsp-optimality of the Voronoi partition and in-
center locations). For any P = {p1, . . . , pn} ∈ F(S) and any partition
{W1, . . . ,Wn} ⊂ P(S) of S,

Hsp(p1, . . . , pn, V1(P), . . . , Vn(P)) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn),

that is, the Voronoi partition V(P) is optimal for Hsp among all partitions
of S, and

Hsp(IC(W1), . . . , IC(Wn),W1, . . . ,Wn) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn),

that is, the incenters IC(W1), . . . , IC(Wn) are optimal for Hsp among all
configurations in S.

As a corollary of this result, we have that the incenter set of S is composed
of global optima of Hsp for the 1-center problem, that is, when n = 1.
This comes as no surprise since, in this case, the value Hsp(p) corresponds
to the radius of the maximum-radius sphere centered at p enclosed in S.
The following result characterizes the smoothness properties of the sphere-
packing multicenter function (see Cortés and Bullo, 2005).

Theorem 2.22 (Smoothness properties of Hsp). Given S ⊂ R
d com-

pact, the sphere-packing multicenter function Hsp : Sn → R is globally Lip-
schitz on Sn.

We conclude this section with some remarks that are analogous to those
for the function Hdc. The generalized gradient and the critical points of
Hsp can be characterized, but require a careful study based on nonsmooth
analysis (Clarke, 1983). In particular, two facts taken from Cortés and Bullo
(2005) are of interest here. First, under certain technical conditions, one can
show that the critical points of Hsp are incenter Voronoi configurations. This
is why we refer to Hsp as a multicenter function. Second, the generalized
gradient of Hsp is not spatially distributed over GD. This is essentially due to
the inherent comparison among all agents that is embedded in the definition
of Hsp (via the min function).

2.4 NOTES

A thorough introduction to computational geometric concepts can be found
in Preparata and Shamos (1993), de Berg et al. (2000), and O’Rourke (2000).
The handbooks Goodman and O’Rourke (2004) and Sack and Urrutia (2000)
present a comprehensive overview of computational geometric problems and
their applications. Among the numerous topics that we do not discuss in
this chapter, we mention distance geometry and rigidity theory (Whiteley,
1997), which are notable for their applications to network localization and
formation control.
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The notion of Voronoi partition, and generalizations of it, have been ap-
plied in numerous areas, including spatial interpolation, pattern analysis,
spatial processes modeling, and optimization, to name a few. The sur-
vey Aurenhammer (1991) and the book by Okabe et al. (2000) discuss the
history, properties, and applications of Voronoi partitions. The nearest-
neighbor and natural-neighbor interpolations based on Voronoi partitions
(see, for example Sibson, 1981; Boissonnat and Cazals, 2002) are of par-
ticular interest to the treatment of this chapter because of their spatially
distributed computation character. Spatially distributed maps for motion
coordination are discussed in Mart́ınez et al. (2007) and adopted in later
chapters.

Proximity graphs (Jaromczyk and Toussaint, 1992) are a powerful tool
to capture the structure and shape of geometric objects, and therefore have
applications in multiple areas, including topology control of wireless net-
works (Santi, 2005), computer graphics (Langetepe and Zachmann, 2006),
and geographic analysis (Radke, 1988). The connectivity properties of cer-
tain proximity graphs (including those stated in Theorem 2.8) are taken
from Cortés et al. (2005, 2006). In cooperative control, a closely related
notion is that of state-dependent graph (Mesbahi, 2005). Random geomet-
ric graphs (Penrose, 2003) and percolation theory (Bollobás and Riordan,
2006; Meester and Roy, 2008) study the properties of proximity graphs as-
sociated to the random deployment of points according to some specified
density function.

Locational optimization problems (Drezner, 1995; Drezner and Hamacher,
2001) are spatial resource-allocation problems (e.g., where to place mail-
boxes in a city, or where to place cache serves on the internet) that pervade
a broad spectrum of scientific disciplines. Computational geometry plays
an important role in locational optimization (Robert and Toussaint, 1990;
Okabe et al., 2000). The field of geometric optimization (Mitchell, 1997;
Agarwal and Sharir, 1998; Boltyanski et al., 1999) blends the geometric and
locational optimization aspects to study a wide variety of optimization prob-
lems induced by geometric objects. The smoothness properties of the cost
function Hexp are taken from Cortés et al. (2005).

2.5 PROOFS

This section gathers the proofs of the main results presented in the chapter.
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2.5.1 Proofs of Theorem 2.7 and Theorem 2.8

Proof of Theorem 2.7. The inclusions in fact (i) are taken from Jaromczyk
and Toussaint (1992), and de Berg et al. (2000). The proof of the first
inclusion in fact (ii) is as follows. Let (pi, pj) ∈ EGG ∩Gdisk(r)(P). From the

definition of the Gabriel graph, we deduce that ‖pi+pj

2 − pi‖2 = ‖pi+pj

2 −

pj‖2 ≤ ‖pi+pj

2 − pk‖2, for all k ∈ {1, . . . , n} \ {i, j}, and therefore, pi+pj

2 ∈

Vi(P)∩Vj(P). Since (pi, pj) ∈ EGdisk(r)(P), we deduce that pi+pj

2 ∈ B(pi,
r
2)∩

B(pj ,
r
2), and hence (pi, pj) ∈ EGLD(r)(P). The second inclusion in (ii) is

straightforward: if (pi, pj) ∈ EGLD(r)(P), then Vi(P) ∩ Vj(P) 6= ∅, that is,
(pi, pj) ∈ EGD

(P). Since clearly (pi, pj) ∈ EGdisk(r)(P), we conclude (ii). �

Proof of Theorem 2.8. The proof of fact (i) is as follows. Let P ∈ F(Rd).
If GEMST(P) ⊆ Gdisk(r)(P), then clearly Gdisk(r)(P) is connected. To prove
the other implication, we reason by contradiction. Assume Gdisk(r)(P) is
connected and let GEMST(P) 6⊆ Gdisk(r)(P), that is, there exist pi and pj

with (pi, pj) ∈ EGEMST
(P) and ‖pi − pj‖2 > r. If we remove this edge

from EGEMST
(P), then the tree becomes disconnected into two connected

components T1 and T2, with pi ∈ T1 and pj ∈ T2. Now, since by hypoth-
esis Gdisk(r)(P) is connected, there must exist k, l ∈ {1, . . . , n} such that
pk ∈ T1, pl ∈ T2 and ‖pk − pl‖2 ≤ r. If we add the edge (pk, pl) to the
set of edges of T1 ∪ T2, then the resulting graph G is acyclic, connected,
and contains all the vertices P, that is, G is a spanning tree. Moreover,
since ‖pk − pl‖2 ≤ r < ‖pi − pj‖2 and T1 and T2 are induced subgraphs of
GEMST(P), we conclude that G has smaller length than GEMST(P), which
is a contradiction with the definition of the Euclidean minimum spanning
tree.

Next, we prove fact (ii). For r ∈ R+, it suffices for us to show that
GEMST ∩Gdisk(r) has the same connected components as Gdisk(r), since this
implies that the same result holds for GRN ∩Gdisk(r), GG ∩Gdisk(r), and
GLD(r). Since GEMST ∩Gdisk(r) is a subgraph of Gdisk(r), it is clear that ver-
tices belonging to the same connected component of GEMST ∩Gdisk(r) must
also belong to the same connected component of Gdisk(r). To prove the con-
verse, let P ∈ F(Rd), and assume that pi and pj in P verify ‖pi − pj‖2 ≤ r.
Let C be the connected component of Gdisk(r)(P) to which they belong.
With a slight abuse of notation, we also denote by C the vertices of the con-
nected component. Since C is connected, then GEMST(C) ⊂ C by fact (i).
Moreover, since all the nodes in P \ C are at a distance strictly larger than
r from any node of C, we deduce from the definition of the Euclidean min-
imum spanning tree that GEMST(C) is equal to the subgraph of GEMST(P)
induced by C. Therefore, GEMST(C) ⊂ GEMST ∩Gdisk(r)(P), and pi and
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pj belong to the same component of GEMST ∩Gdisk(r)(P). This implies the
result. �

2.5.2 Proof of Proposition 2.9

Proof. Regarding the statement on GRN ∩Gdisk(r), note that

B(pi, ‖pi − pj‖2)∩B(pj , ‖pi − pj‖2) ⊂ B(pi, ‖pi − pj‖2).

Therefore, if ‖pi − pj‖2 ≤ r, then any node contained in the intersection
B(pi, ‖pi − pj‖2)∩B(pj , ‖pi − pj‖2) must necessarily be within a distance
r of pi. From here, we deduce that GRN ∩Gdisk(r) is spatially distributed
over Gdisk(r). Regarding the statement on GG ∩Gdisk(r), note that

B
(pi + pj

2
,
‖pi − pj‖2

2

)

⊂ B(pi, ‖pi − pj‖2).

Therefore, if ‖pi − pj‖2 ≤ r, then any node contained in B
(pi+pj

2 , ‖pi−pj‖2

2

)

must necessarily be within a distance r of pi. From here, we deduce that
GG ∩Gdisk(r) is spatially distributed over Gdisk(r). Finally, note that if ‖pi−
pj‖2 > r, then the half-plane {q ∈ R

2 | ‖q − pi‖2 ≤ ‖q − pj‖2} contains the
ball B(pi,

r
2). Accordingly,

Vi, r

2
(P) = Vi(P) ∩B(pi,

r
2)

= {q ∈ R
2 | ‖q − pi‖2 ≤ ‖q − pj‖2, for all pj ∈ P} ∩B(pi,

r
2)

= {q ∈ R
2 | ‖q − pi‖2 ≤ ‖q − pj‖2, for all pj ∈ NGdisk(r),pi

(P)} ∩B(pi,
r
2),

from which we deduce that GLD(r) is spatially distributed over Gdisk(r). �

2.5.3 Proof of Theorem 2.16

We begin with some preliminary notions. In the following, a set Ω ⊂ R
2

is piecewise continuously differentiable if its boundary, ∂Ω, is a not self-
intersecting closed curve that admits a continuous and piecewise continu-
ously differentiable parameterization γ : [0, 1] → R

2. Likewise, a collection
of sets {Ω(x) ⊂ R

2 | x ∈ (a, b)} is a piecewise continuously differentiable
family if Ω(x) is piecewise continuously differentiable for all x ∈ (a, b), and
there exists a continuous function γ : [0, 1] × (a, b) → R

2, (t, x) 7→ γ(t, x),
continuously differentiable with respect to its second argument, such that
for each x ∈ (a, b), the map t 7→ γx(t) = γ(t, x) is a continuous and piecewise
continuously differentiable parameterization of ∂Ω(x). We refer to γ as a
parameterization for the family {Ω(x) ⊂ R

2 | x ∈ (a, b)}.
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The following result is an extension of the Law of Conservation of Mass
in fluid mechanics (Chorin and Marsden, 1994) and of the classic divergence
theorem in differential geometry (Chavel, 1984).

Proposition 2.23 (Generalized conservation of mass). Let {Ω(x) ⊂
R

2 | x ∈ (a, b)} be a family of star-shaped sets with piecewise continuously
differentiable boundary. Let the function φ : R

2 × (a, b) → R be continuous
on R

2 × (a, b) that is continuously differentiable with respect to its second
argument for all x ∈ (a, b) and almost all q ∈ Ω(x), and such that for each

x ∈ (a, b), the maps q 7→ φ(q, x) and q 7→ ∂φ
∂x

(q, x) are measurable, and
integrable on Ω(x). Then, the function

(a, b) ∋ x 7→

∫

Ω(x)
φ(q, x)dq (2.5.1)

is continuously differentiable and

d

dx

∫

Ω(x)
φ(q, x)dq =

∫

Ω(x)

∂φ

∂x
(q, x)dq +

∫

∂Ω(x)
φ(γ, x)

(

n(γ) ·
∂γ

∂x

)

dγ ,

where n : ∂Ω(x) → R
2, q 7→ n(q), denotes the unit outward normal to ∂Ω(x)

at q ∈ ∂Ω(x), and γ : [0, 1]×(a, b) → R
2 is a parameterization for the family

{Ω(x) ⊂ R
2 | x ∈ (a, b)}.

We interpret the proposition as follows: in the fluid mechanics interpreta-
tion, as the parameter x changes, the total mass variation inside the region
can be decomposed into two terms. The first term is the amount of mass
created inside the region, whereas the second term is the amount of mass
that crosses the moving boundary of the region.

Proof of Proposition 2.23. Let x0 ∈ (a, b). Using the fact that the map
γ is continuous and that Ω(x0) is star-shaped, one can show that there
exist an interval around x0 of the form (x0 − ε, x0 + ε), a continuously
differentiable function ux0

: [0, 1] × R≥0 → R
2 and a function rx0

: [0, 1] ×
(x0 − ε, x0 + ε) → R≥0 continuously differentiable in its second argument
and piecewise continuously differentiable in its first argument, such that for
all x ∈ (x0 − ε, x0 + ε), one has

Ω(x) = ∪t∈[0,1]{ux0
(t, s) | 0 ≤ s ≤ rx0

(t, x)},

γ(t, x) = ux0
(t, rx0

(t, x)), for all t ∈ [0, 1].

For simplicity, we denote by r and u the functions rx0
and ux0

, respectively.
By definition, the function in (2.5.1) is continuously differentiable at x0 if
the following limit exists:

lim
h→0

1

h

(

∫

Ω(x0+h)
φ(q, x0 + h)dq −

∫

Ω(x0)
φ(q, x0)dq

)

,
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and depends continuously on x0. Now, we can rewrite the previous limit as

lim
h→0

1

h

∫ 1

0

(

∫ r(t,x0+h)

0
φ(u(t, s), x0 + h)

∥

∥

∥

∂u

∂t
×
∂u

∂s

∥

∥

∥

2
ds

−

∫ r(t,x0)

0
φ(u(t, s), x0)

∥

∥

∥

∂u

∂t
×
∂u

∂s

∥

∥

∥

2
ds

)

dt

= lim
h→0

1

h

∫ 1

0

(

∫ r(t,x0+h)

r(t,x0)
φ(u(t, s), x0 + h)

∥

∥

∥

∂u

∂t
×
∂u

∂s

∥

∥

∥

2
ds

+

∫ r(t,x0)

0
(φ(u(t, s), x0 + h) − φ(u(t, s), x0))

∥

∥

∥

∂u

∂t
×
∂u

∂s

∥

∥

∥

2
ds

)

dt, (2.5.2)

where × denotes the vector product and for brevity we omit the fact that
the partial derivatives ∂u

∂t
and ∂u

∂s
are evaluated at (t, s) in the integrals.

Regarding the second integral in the last equality of (2.5.2), since

lim
h→0

1

h

(

(φ(u(t, s), x0 + h) − φ(u(t, s), x0))
∥

∥

∥

∂u

∂t
×
∂u

∂s

∥

∥

∥

2

)

=
∂φ

∂x0
(u(t, s), x0)

∥

∥

∥

∂u

∂t
×
∂u

∂s

∥

∥

∥

2
,

almost everywhere, and this function is measurable and its integral over
the bounded set Ω(x0) is finite by hypothesis, the Lebesgue Dominated
Convergence Theorem (Bartle, 1995) implies that

lim
h→0

1

h

∫ 1

0

∫ r(t,x0)

0
(φ(u(t, s), x0 + h) − φ(u(t, s), x0))

∥

∥

∥

∂u

∂t
×
∂u

∂s

∥

∥

∥

2
dsdt

=

∫ 1

0

∫ r(t,x0)

0

∂φ

∂x
(u(t, s), x0)

∥

∥

∥

∂u

∂t
×
∂u

∂s

∥

∥

∥

2
dsdt

=

∫

Ω(x0)

∂φ

∂x
(q, x0)dq. (2.5.3)

On the other hand, regarding the first integral in the last equality of (2.5.2),
using the continuity of φ, one can deduce that

lim
h→0

1

h

∫ 1

0

∫ r(t,x0+h)

r(t,x0)
φ(u(t, s), x0 + h)

∥

∥

∥

∂u

∂t
(t, s)×

∂u

∂s
(t, s)

∥

∥

∥

2
ds dt

= lim
h→0

1

h

∫ 1

0

∫ x0+h

x0

φ(u(t, r(t, z)), x0 + h)

·
∥

∥

∥

∂u

∂t
(t, r(t, z))×

∂u

∂s
(t, r(t, z))

∥

∥

∥

2

∂r

∂x
(t, z) dz dt

=

∫ 1

0
φ(u(t, r(t, x0)), x0)

∥

∥

∥

∂u

∂t
(t, r(t, x0))×

∂u

∂s
(t, r(t, x0))

∥

∥

∥

2

∂r

∂x0
(t, x0) dt.
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Since γ(t, x) = u(t, r(t, x)) for all t ∈ [0, 1] and x ∈ (x0 − ε, x0 + ε), one has

∂γ

∂t
(t, x0) =

∂u

∂t
(t, r(t, x0)) +

∂u

∂s
(t, r(t, x0))

∂r

∂t
(t, x0) ,

∂γ

∂x
(t, x0) =

∂u

∂s
(t, r(t, x0))

∂r

∂x
(t, x0).

Let χ denote the angle formed by ∂γ
∂t

(t, x0) and ∂u
∂s

(t, r(t, x0)). Then (omit-
ting the expression (t, r(t, x)) for brevity),

∥

∥

∥

∂u

∂t
×
∂u

∂s

∥

∥

∥

2
=

∥

∥

∥

(

∂u

∂t
+
∂u

∂s

∂r

∂t

)

×
∂u

∂s

∥

∥

∥

2

=
∥

∥

∥

dγ

dt

∥

∥

∥

2

∥

∥

∥

∂u

∂s

∥

∥

∥

2
sinχ =

∥

∥

∥

∂γ

∂t

∥

∥

∥

2
nT (γ)

∂u

∂s
,

where in the last inequality we have used the fact that, since γx0
is a param-

eterization of ∂Ω(x0), then sinχ = cosψ, where ψ is the angle formed by n,
the outward normal to ∂Ω(x0), and ∂u

∂s
. Therefore, we finally arrive at

∫ 1

0
φ(γ(t), x0)

∥

∥

∥

∂u

∂t
(t, r(t, x0))×

∂u

∂s
(t, r(t, x0))

∥

∥

∥

2

∂r

∂x
(t, x0)dt

=

∫ 1

0
φ(γ(t), x0)

∥

∥

∥

∂γ

∂t
(t, x0)

∥

∥

∥

2
nT (γ(t, x0))

∂γ

∂x
(t, x0)dt

=

∫

∂Ω(x0)
φ(γ, x0)n

T (γ)
∂γ

∂x
dγ. (2.5.4)

Given the hypothesis of Proposition 2.23, both terms in (2.5.3) and (2.5.4)
have a continuous dependence on x0 ∈ (a, b). This concludes the proof. �

We are finally ready to state the proof of the main result of Section 2.3.

Proof of Theorem 2.16. We prove the theorem statement when the perfor-
mance function is continuously differentiable and we refer to Cortés et al.
(2005) for the complete proof for the case when the performance function
is piecewise continuously differentiable. Specifically, we show that if f is
continuously differentiable, then for P ∈ Sn \ Scoinc,

∂Hexp

∂pi
(P ) =

∫

Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq.
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From Proposition 2.23, we have

∂

∂pi

(

n
∑

j=1

∫

Vj(P)
f(‖q − pj‖2)φ(q)dq

)

=

∫

Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq

+
n

∑

j=1

∫

∂Vj(P)
ϕ(pj , q)

(

n(γj) ·
∂γj

∂pi

)

dγj ,

where γj is a parametrization of Vj(P) and where we abbreviate ϕ(pj , q) =
f(‖q − pj‖2)φ(q). Next, we show that the second term vanishes. Note that
the motion of pi affects the Voronoi cell Vi(P) and the cells of all its neighbors
in NGD,pi

(P). Therefore, the second term equals

∫

∂Vi(P)
ϕ(pi, q)

(

n(γi) ·
∂γi

∂pi

)

dγi

+
∑

pj∈NGD,pi
(P)

∫

∂Vj(P)
ϕ(pj , q)

(

n(γj) ·
∂γj

∂pi

)

dγj .

Without loss of generality, assume that Vi(P) does not share any face with
∂S. Since the boundary of Vi(P) satisfies ∂Vi(P) =

⋃

j ∆ij , where ∆ij = ∆ji

is the edge between Vi(P) and Vj(P), for all neighbors pj , we compute
∫

∂Vi(P)
ϕ(pi, q)

(

n(γi) ·
∂γi

∂pi

)

dγi =
∑

pj∈NGD,pi
(P)

∫

∆ij

ϕ(pi, q)
(

nij(γj) ·
∂γj

∂pi

)

dγj ,

∫

∂Vj(P)
ϕ(pj , q)

(

n(γj) ·
∂γj

∂pi

)

dγj =

∫

∆ji

ϕ(pj , q)
(

nji(γj) ·
∂γj

∂pi

)

dγj ,

where nij denotes the unit normal along ∆ij outward of Vi(P ). Noting that
nji = −nij and collecting the results obtained so far, we write

n
∑

j=1

∫

∂Vj(P)
ϕ(pj , q)

(

n(γj) ·
∂γj

∂pi

)

dγj

=
∑

pj∈NGD,pi
(P)

∫

∆ij

(

ϕ(pi, q) − ϕ(pj , q)
)(

nij(γj) ·
∂γj

∂pi

)

dγj .

This quantity vanishes because f(‖q − pi‖2) = f(‖q − pj‖2), and therefore
ϕ(pi, q) = ϕ(pj , q) for any q belonging to the edge ∆ij . �

2.5.4 Proof of Proposition 2.19

Proof. Recall that Hdc(p1, . . . , pn) = Hdc(p1, . . . , pn, V1(P), . . . , Vn(P)). To
show the first inequality, let j ∈ {1, . . . , n} and q∗ ∈ Vj(P) be such that
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Hdc(p1, . . . , pn) = ‖q∗ − pj‖2. By definition, given a partition {W1, . . . ,Wn}
of S, there exists k such that q∗ ∈Wk. Therefore,

Hdc(p1, . . . , pn) = ‖q∗ − pj‖2 ≤ ‖q∗ − pk‖2

≤ max
q∈Wk

‖q − pj‖2 ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn).

To show the second inequality, note that the definition of circumcenter im-
plies that, for each i ∈ {1, . . . , n},

max
q∈∂Wi

‖q − CC(Wi)‖2 ≤ max
q∈∂Wi

‖q − pi‖2.

Taking the maximum over all nodes, we deduce that

Hdc(CC(W1), . . . ,CC(Wn),W1, . . . ,Wn) ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn),

as claimed. �

2.5.5 Proof of Proposition 2.21

Proof. Recall that Hsp(p1, . . . , pn) = Hsp(p1, . . . , pn, V1(P), . . . , Vn(P)). To
show the first inequality, let j ∈ {1, . . . , n} and q∗ 6∈ int(Vj(P)) be such
that Hsp(p1, . . . , pn) = ‖q∗ − pj‖2. Since q∗ 6∈ int(Vj(P)), there exists i ∈
{1, . . . , n} such that ‖q∗− pj‖2 ≥ ‖q∗− pi‖2. On the other hand, there must
exist k ∈ {1, . . . , n} such that q∗ ∈ Wk. Now, if k = j, then q∗ 6∈ int(Wi).
Therefore,

Hsp(p1, . . . , pn) = ‖q∗ − pj‖2 ≥ ‖q∗ − pi‖2

≥ min
q 6∈int(Wi)

‖q − pi‖2 ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn).

Now, if k = i, then q∗ 6∈ int(Wj). Therefore,

Hsp(P ) = ‖q∗ − pj‖2 ≥ min
q 6∈int(Wj)

‖q − pi‖2 ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn).

Finally, if k 6= i, j, then q∗ 6∈ int(Wi) ∪ int(Wj), and a similar argument
guarantees Hsp(p1, . . . , pn) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn).

To show the second inequality, let i ∈ {1, . . . , n} and select qi ∈ IC(Wi).
The definition of the incenter set implies that,

min
q∈∂Wi

‖q − qi‖2 ≥ min
q∈∂Wi

‖q − pi‖2.

The expression on the left does not depend on the specific point selected in
the incenter set. Taking the minimum over all nodes, we deduce that

Hsp(IC(W1), . . . , IC(Wn),W1, . . . ,Wn) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn),

as claimed. �
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2.6 EXERCISES

E2.1 (Proof of Lemma 2.2). For S = {p1, . . . , pn} ∈ F(Rd) with n ≥ 2, prove the
following statements:

(i) CC(S) ∈ co(S) \ Ve(co(S));

(ii) if p ∈ co(S) \ {CC(S)} and r ∈ R>0 are such that S ⊂ B(p, r), then the
segment ]p, CC(S)[ has a nonempty intersection with B( p+q

2
, r

2
) for all

q ∈ co(S).
Hint: To show (i), invoke the definition of circumcenter. To show (ii), distinguish
between the case when ‖p−q‖2 < r and ‖p−q‖2 = r. A proof is contained in Cortés
et al. (2006).

E2.2 (The centroid of a convex set is an interior point). Let S be a bounded
measurable convex set in R

d and let φ : S → R>0 be a bounded measurable
density function that is positive over S. Show that

CMφ(S) ∈ int(S).

E2.3 (The inclusion GLD(r) ⊂ GD ∩Gdisk(r) is in general strict). Consider the
nodes p1 = (0, 0), p2 = (1, 0), and p3 = (2, 1

10
). Pick r = 3 and perform the

following tasks:

(i) draw the three points, their Voronoi polygons and the disks centered at
the points with radius r; and

(ii) show that p1 and p3 are neighbors in the graph GD ∩Gdisk(r), but not in
the graph GLD(r).

E2.4 (The proximity graph GD ∩ Gdisk(r) is not spatially distributed over
Gdisk(r)). Consider the nodes p1 = (0, 0), p2 = (1, 0), p3 = (2, 1

10
), and p4 =

(0, 31
10

). Compute the Voronoi partitions of the plane generated by {p1, p2.p3}
and {p1, p2, p3, p4}. For r = 3, show that p1 and p3 are neighbors in the graph
GD ∩Gdisk(r)({p1, p2, p3}) but not in the graph GD ∩Gdisk(r)({p1, p2, p3, p4}). Why
does this exercise illustrate that GD ∩ Gdisk(r) is not spatially distributed over
Gdisk(r)?

E2.5 (1-center area problem). Let W ⊂ R
2 be a convex polygon, let φ be a density

function on R
2, and let a ∈ R>0. Assume that the a-contraction of W is non-

empty. Consider the area function H1 : W → R, defined by

H1(p) =

Z

W∩B(p,a)

φ(q)dq = Aφ(W ∩ B(p, a)).

Justify informally why, at points in the boundary of a convex polygon W , the gra-
dient of H1 is non-vanishing, and points toward the interior of the polygon. (Note
that it is not known whether the function H1 is concave and how to characterize
critical points of H1 in geometric terms.)

E2.6 (Concavity of performance function and 1-center function). Given a
performance function f , define the 1-center function Hexp,1 : S → R by

Hexp,1(p) =

Z

S

f(‖q − p‖2)φ(q)dq.

Prove the following facts:
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(i) if f is concave, then Hexp,1 is concave; and

(ii) if f is concave and decreasing and S has positive measure, then Hexp,1

is strictly concave.

E2.7 (Fermat–Weber center). Let S ⊂ R
2 be a convex polygon and let φ be a

density function on S. Define the Fermat–Weber function HFW : R
2 → R by

HFW(p) =

Z

S

‖p − q‖2φ(q)dq.

(i) Prove that HFW is strictly convex.

(ii) Show that HFW has a unique global minimum point inside S.

(iii) Compute the derivative of HFW and propose an algorithm to compute
the global minimum point.

(iv) Is the function strictly convex even if the polygon S is not convex?
The unique minimum of HFW is called the Fermat–Weber point or, alternatively,
the median point of the region S. Further details on this problem are available
in Fekete et al. (2005) and references therein.

E2.8 (Proof of Proposition 2.14). In this exercise, you are asked to prove a state-
ment that is slightly more general than Proposition 2.14. Let {W1, . . . , Wn} ⊂
P(S) be a partition of S ⊂ R

d and let φ be a density function on R
d. Select

{p1, . . . , pn}, {p1, . . . , pn} ∈ F(S) with the property that, for all i ∈ {1, . . . , n},

‖pi − CMφ(Wi)‖2 ≤ ‖pi − CMφ(Wi)‖2.

Show that

Hdist(p1, . . . , pn, W1, . . . , Wn) ≥ Hdist(p1, . . . , pn, W1, . . . , Wn),

and that the inequality is strict if there exists i ∈ {1, . . . , n} such that ‖pi −
CMφ(Wi)‖2 < ‖pi − CMφ(Wi)‖2 and such that Wi has positive area.
Hint: Use the expression of Hdist in (2.3.5).

E2.9 (Mixed distortion-area multicenter function). Show that the expected mul-
ticenter function Hexp takes the form of Hdist-area,a,b stated in Section 2.3.1 when
the performance function is

f(x) = −x2 1[0,a](x) + b · 1]a,+∞[(x),

with a ∈ R>0 and b ≤ −a2.
Hint: As an intermediate step, show that for P = (p1, . . . , pn) ∈ Sn, one has
Vi(P ) ∩ (S \ B(pi, a)) = Vi(P ) ∩

`

S \ ∪n
k=1B(pk, a)

´

for all i ∈ {1, . . . , n}.

E2.10 (Proof of Proposition 2.15). This exercise is a guided proof of Proposition 2.15.
Let W ⊂ R

d be a connected set, let φ be a density function on R
d, and let a ∈ R>0.

For p ∈ W and B a closed ball centered at a point in W with radius a, define
(p, B) 7→ HW (p, B) by

HW (p, B) = −

Z

W∩B

‖q − p‖2
2φ(q)dq −

Z

W∩(S\B)

a2φ(q)dq.

Do the following:
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(i) Show that the multicenter function Hdist-area,a admits the expression

Hdist-area,a(p1, . . . , pn, W1, . . . , Wn) =
n

X

i=1

HWi(pi, B(pi, a)).

(ii) Given a closed ball B centered at a point in W with radius a, show that
for any p ∈ W ,

HW (CMφ(W ∩ B), B) ≥ HW (p, B),

with strict inequality unless p = CMφ(W ∩ B).
Hint: Use the Parallel Axis Theorem (Hibbeler, 2006).

(iii) Given p ∈ W , show that for any closed ball B centered at a point in W
with radius a,

HW (p, B(p, a)) ≥ HW (p, B).

Hint: Consider the decomposition of W given by the union of the disjoint
sets B(p, a)∩B, B(p, a)∩ (W \B), (W \B(p, a))∩B and (W \B(p, a))∩
(W \ B), and compare the integrals over each set.

(iv) Deduce, using (ii) and (iii), that

HW (CMφ(W ∩ B(p, a)), B(CMφ(W ∩ B(p, a)), a)) ≥ HW (p, B(p, a)),

with strict inequality unless p = CMφ(W ∩ B).

(v) Combine (i) and (iv) to prove Proposition 2.15.

E2.11 (Locally cliqueless proximity graph). Give an example of an allowable envi-
ronment Q and a configuration of points such that the following inclusions (taken
from Theorem 2.11(i)) are strict for G = Gvis,Q:

GEMST,G ⊆ Glc,G ⊆ G,

E2.12 (Properties of the locally cliqueless graph). Prove Theorem 2.11.
Hint: This exercise has notable theoretical content. To prove Theorem 2.11(i),
use an argument by contradiction to show that the first inclusion holds, and use
the definition of locally cliqueless graph to show that the second inclusion holds.

E2.13 (When are the total derivative and the partial derivative of a function
equal?). Assume that f : R×R → R is continuously differentiable in its both of its
arguments and let ∂1f be its partial derivative with respect to its first argument.
Assume that the function y∗ : R → R satisfies, for each x ∈ R,

f(x, y∗(x)) = max{f(x, z) | z ∈ R},

and is continuously differentiable. Perform the following tasks:

(i) Show that
d

dx
f(x, y∗(x)) = ∂1f(x, y∗(x)). (E2.1)

(ii) Explain how this result gives an insight into the expression of the gradient
of Hexp in Theorem 2.16(ii) for a continuously differentiable performance
function. Also, explain why this formula is not directly applicable to the
function Hexp.
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Note that equation (E2.1) is referred to as the envelope theorem in the economics
literature.

E2.14 (Distortion gradient ascent flow). Given a (convex) polytope S ⊂ R
d and a

density function φ, consider n nodes p1, . . . , pn evolving under the continuous-time
gradient ascent flow of the multicenter function Hdist,

ṗi = 2 Aφ(Vi(P))(CMφ(Vi(P)) − pi), i ∈ {1, . . . , n}.

(i) What are the equilibrium points?

(ii) Show that Hdist is monotonically non-decreasing along the flow.

(iii) Show that the set SN is invariant, i.e., that the trajectories of all nodes
remain in S.

(iv) Use (i)–(iii) to apply the LaSalle Invariance Principle and show that the
solutions of the flow converge to the set of centroidal Voronoi configura-
tions in S.

(v) Implement numerically the flow in the software of your choice. Select the
unit square S = [0, 1] × [0, 1] and the density function

φ = exp
“

−
`

x −
1

8

´2
−

`

y −
1

8

´2
”

+ exp
“

−
`

x −
7

8

´2
−

`

y −
7

8

´2
”

.

Run simulations from different initial conditions and with different num-
bers of nodes. Show by illustration that multiple local maxima exist.

Hint: To perform step (iv), one should also prove that any two nodes never con-
verge to the same location (in finite or infinite time); this property needs to be
established because the function Hdist is not differentiable on such configurations.
For this and the next exercise, do not worry about proving this property and instead
refer to Cortés et al. (2005, Proposition 3.1).

E2.15 (Area gradient ascent flow). Given a (convex) polytope S ⊂ R
d, a density

function φ, and a radius a ∈ R>0, consider n nodes p1, . . . , pn evolving under the
continuous-time gradient ascent flow of the multicenter function Harea,a,

ṗi =

Z

Vi(P)∩ ∂B(pi,a)

nout(q)φ(q)dq, i ∈ {1, . . . , n},

where nout is the outward normal vector to the ball B(pi, a).

(i) What are the equilibrium points?

(ii) Show that Harea,a is monotonically non-decreasing along the flow.

(iii) Show that the set SN is invariant, i.e., that the trajectories of all nodes
remain in S.

(iv) Use (i-)-(iii) to apply the LaSalle Invariance Principle and show that
the solutions of the flow converge to the set of a-limited area-centered
Voronoi configurations in S.

(v) Implement numerically the flow in the software of your choice. Select the
unit square S = [0, 1] × [0, 1], the density function

φ(x, y) = exp
“

−
`

x −
1

8

´2
−

`

y −
1

8

´2
”

+ exp
“

−
`

x −
7

8

´2
−

`

y −
7

8

´2
”

,
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and the parameter a = 1
8
. Run simulations from different initial con-

ditions and with different numbers of nodes. Show by illustration that
multiple local maxima exist.

47

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



share May 20, 2009



share May 20, 2009

Bibliography

Agarwal, P. K. and Sharir, M. [1998] Efficient algorithms for geometric
optimization, ACM Computing Surveys, 30(4), 412–458.

Aurenhammer, F. [1991] Voronoi diagrams: A survey of a fundamental ge-
ometric data structure, ACM Computing Surveys, 23(3), 345–405.

Bartle, R. G. [1995] The Elements of Integration and Lebesgue Measure,
Wiley-Interscience, ISBN 0471042226.

Boissonnat, J.-D. and Cazals, F. [2002] Smooth surface reconstruction via
natural neighbour interpolation of distance functions, Computational Ge-
ometry: Theory and Applications, 22(1), 185–203.

Bollobás, B. and Riordan, O. [2006] Percolation, Cambridge University
Press, ISBN 0521872324.

Boltyanski, V., Martini, H., and Soltan, V. [1999] Geometric methods and
optimization problems, volume 4 of Combinatorial optimization, Kluwer
Academic Publishers, ISBN 0792354540.

Chavel, I. [1984] Eigenvalues in Riemannian Geometry, Academic Press,
ISBN 0121706400.

Chorin, A. J. and Marsden, J. E. [1994] A Mathematical Introduction to
Fluid Mechanics, volume 4 of Texts in Applied Mathematics, third edition,
Springer, ISBN 0387979182.

Clarke, F. H. [1983] Optimization and Nonsmooth Analysis, Canadian Math-
ematical Society Series of Monographs and Advanced Texts, John Wiley,
ISBN 047187504X.

Cortés, J. and Bullo, F. [2005] Coordination and geometric optimization via
distributed dynamical systems, SIAM Journal on Control and Optimiza-
tion, 44(5), 1543–1574.

Cortés, J., Mart́ınez, S., and Bullo, F. [2005] Spatially-distributed coverage
optimization and control with limited-range interactions, ESAIM: Control,
Optimisation & Calculus of Variations, 11, 691–719.



DCRN Chapter 2: Geometric models and optimization

— [2006] Robust rendezvous for mobile autonomous agents via proximity
graphs in arbitrary dimensions, IEEE Transactions on Automatic Control,
51(8), 1289–1298.

Cortés, J., Mart́ınez, S., Karatas, T., and Bullo, F. [2004] Coverage control
for mobile sensing networks, IEEE Transactions on Robotics and Automa-
tion, 20(2), 243–255.

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. [2000]
Computational Geometry: Algorithms and Applications, second edition,
Springer, ISBN 3540656200.

Drezner, Z., (editor) [1995] Facility Location: A Survey of Applications and
Methods, Series in Operations Research, Springer, ISBN 0-387-94545-8.

Drezner, Z. and Hamacher, H. W., (editors) [2001] Facility Location: Appli-
cations and Theory, Springer, ISBN 3540421726.

Du, Q., Faber, V., and Gunzburger, M. [1999] Centroidal Voronoi tessella-
tions: Applications and algorithms, SIAM Review, 41(4), 637–676.

Fekete, S. P., Mitchell, J. S. B., and Beurer, K. [2005] On the continuous
Fermat–Weber problem, Operations Research, 53(1), 61 – 76.

Ganguli, A., Cortés, J., and Bullo, F. [2009] Multirobot rendezvous with visi-
bility sensors in nonconvex environments, IEEE Transactions on Robotics,
25(2), 340–352.

Goodman, J. E. and O’Rourke, J., (editors) [2004] Handbook of Discrete and
Computational Geometry, second edition, CRC Press, ISBN 1584883014.

Gray, R. M. and Neuhoff, D. L. [1998] Quantization, IEEE Transactions on
Information Theory, 44(6), 2325–2383, Commemorative Issue 1948-1998.

Hibbeler, R. C. [2006] Engineering Mechanics: Statics & Dynamics, 11th
edition, Prentice Hall, ISBN 0132215098.

Jaromczyk, J. W. and Toussaint, G. T. [1992] Relative neighborhood graphs
and their relatives, Proceedings of the IEEE, 80(9), 1502–1517.

Langetepe, E. and Zachmann, G. [2006] Geometric Data Structures for Com-
puter Graphics, A. K. Peters, ISBN 1568812353.

Mart́ınez, S., Cortés, J., and Bullo, F. [2007] Motion coordination with dis-
tributed information, IEEE Control Systems Magazine, 27(4), 75–88.

Meester, R. and Roy, R. [2008] Continuum Percolation, Cambridge Univer-
sity Press, ISBN 0521062500.

50

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 2: Geometric models and optimization

Mesbahi, M. [2005] On state-dependent dynamic graphs and their controlla-
bility properties, IEEE Transactions on Automatic Control, 50(3), 387–
392.

Mitchell, J. S. B. [1997] Shortest paths and networks, in Handbook of Discrete
and Computational Geometry, J. E. Goodman and J. O’Rourke, editors,
chapter 24, pages 445–466, CRC Press, ISBN 0849385245.

Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. [2000] Spatial Tessel-
lations: Concepts and Applications of Voronoi Diagrams, second edition,
Wiley Series in Probability and Statistics, John Wiley, ISBN 0471986356.

O’Rourke, J. [2000] Computational Geometry in C, Cambridge University
Press, ISBN 0521649765.

Penrose, M. [2003] Random Geometric Graphs, Oxford Studies in Probabil-
ity, Oxford University Press, ISBN 0198506260.

Preparata, F. P. and Shamos, M. I. [1993] Computational Geometry: An
Introduction, Springer, ISBN 0387961313.

Radke, J. D. [1988] On the shape of a set of points, in Computational mor-
phology. A computational geometric approach to the analysis of form.,
G. T. Toussaint, editor, pages 105–136, North-Holland, ISBN 0-444-
70467-1.

Robert, J.-M. and Toussaint, G. T. [1990] Computational geometry and fa-
cility location, in Int. Conf. on Operations Research and Management
Science, pages 1–19, Manila, The Philippines.

Sack, J. R. and Urrutia, J., (editors) [2000] Handbook of Computational
Geometry, North-Holland, ISBN 0444825371.

Santi, P. [2005] Topology Control in Wireless Ad Hoc and Sensor Networks,
John Wiley, ISBN 0470094532.

Sibson, R. [1981] A brief description of natural neighbour interpolation, in
Interpreting Multivariate Data, V. Barnett, editor, pages 21–36, John
Wiley, ISBN 0471280399.

Tutuncu, R. H., Toh, K. C., and Todd, M. J. [2003] Solving semidefinite-
quadratic-linear programs using SDPT3, Mathematical Programming, Se-
ries B, 95, 189–217.

Whiteley, W. [1997] Rigidity and scene analysis, in Handbook of Discrete
and Computational Geometry, J. E. Goodman and J. O’Rourke, editors,
chapter 49, pages 893–916, CRC Press, ISBN 0849385245.

51

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



share May 20, 2009



share May 20, 2009

Subject Index

r-limited Voronoi
partition, see
partition, r-limited
Voronoi

allowable environment, 8
area, 11

cell
r-limited Voronoi, 12
Voronoi, 12

centroid, 11, 25, 43
Chebyshev center, see

incenter
circumcenter, 9, 31, 43
circumradius, 9
convex hull, 6

relative, 8

density, 11

envelope theorem, 46
Euclidean minimum

spanning tree, 16

Fermat–Weber center, 44
function

area, 25
disk-covering, 30
distortion, 24
Fermat–Weber, 44
from-to-inside, 6
mixed distortion-area,

25
multicenter, see

multicenter function
sphere-packing, 32

graph
proximity, see

proximity graph

halfplane, 6
internal tangent, 8

halfspace, 6

incenter, 10, 34
inradius, 10

line integral, 26

median point, see
Fermat–Weber center

multicenter function, 22,
28

area, see function, area
disk-covering, see

function,
disk-covering

distortion, see function,
distortion

expected-value, 22
mixed distortion-area,

see function, mixed
distortion-area, 44

sphere-packing, see
function,
sphere-packing

worst-case, 29

natural immersion, 20
node

active, 30, 33
passive, 30, 33

Parallel Axis Theorem,
11, 24

partition, 12
r-limited Voronoi, 12
Voronoi, 12, 23, 30, 33

performance, 22
polar moment of inertia,

11
polygon, 6

diagonal, 7
edge of, 6
nonconvex, 7
perimeter, 7
simple, 6
vertex

exterior angle, 7
interior angle, 7

vertex of, 6
polytope, 7

edge, 7
face, 7
facet, see polytope, face
vertex, 7

problem
1-center, 23
area, 25, 27, 43, 47
continuous p-center, 29
continuous p-median,

23
distortion, 24, 27, 46
mixed distortion-area,

25, 28
proximity graph, 14, 35
r-∞-disk, 16
r-disk, 15
r-limited Delaunay, 15
complete, 14
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Delaunay, 15
edge map of, 14
Euclidean minimum

spanning tree of, 16
Gabriel, 16
locally cliqueless graph

of, 20, 45
range-limited visibility,

16
relative neighborhood,

15
set of neighbors map

of, 17
spatially distributed

graph over, 18

spatially distributed
map over, 21, 28

subgraph of, 17
visibility, 16

segment
closed, 6
open, 6

set
contraction of, 7
convex, 6
kernel, 7
relative perimeter of, 9
relatively convex, 8
star-shaped, 7

strict concavity of, 7
strictly concave point

of, 7
visibility, 7

range-limited, 7

visible, 7
Voronoi configuration
r-limited centroidal, 13
centroidal, 13
circumcenter, 13
incenter, 13

Voronoi partition, see
partition, Voronoi, 35
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Sδ : δ-contraction of S, 7

φ : R
d → R≥0 : density function on R

d, 11

G(S) : set of all undirected graphs whose vertex set is an element
of F(S), 14

Hp,q : closed halfspace defined by p and q, 6

HS(v) : internal tangent halfplane of v with respect to S, 8

Hexp : expected-value multicenter function, 22

Hdist : distortion function, 24

Harea,a : area function, 25

Hdist-area,a,b : mixed distortion-area function, 25

Hdist-area,a : mixed distortion-area function with b = −a2, 25

Hworst : worst-case multicenter function, 29

Hdc : disk-covering multicenter function, 30

Hsp : sphere-packing multicenter function, 32

f−(a) : limit from the left of f at a, 26

f+(a) : limit from the right of f at a, 26

Jφ(S, p) : polar moment of inertia of S about p with respect to φ,
11

[p, q] : closed segment with extreme points p and q, 6

]p, q[ : open segment with extreme points p and q, 6

Aφ(S) : area of S with respect to φ, 11

CMφ(S) : centroid or center of mass of S with respect to φ, 11

CC(S) : circumcenter of S, 9

CR(S) : circumradius of S, 9

co(S) : convex hull of S, 6

Dscn(f) : set of points where f is discontinuous, 26

EG : edge map associated to G, 14

Ed(Q) : edges of Q, 7

Fa(Q) : faces of Q, 7

fti : from-to-inside function, 6
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G : proximity graph, 14

GD : Delaunay graph, 15

GEMST,G : Euclidean minimum spanning tree of G, 16

GEMST : Euclidean minimum spanning tree of the complete graph,
16

GG : Gabriel graph, 16

Glc,G : locally cliqueless graph of G, 20

GRN : relative neighborhood graph, 15

Gcmplt : complete proximity graph, 14

Gdisk(r) : r-disk graph, 15

G∞-disk(r) : r-∞-disk graph, 16

GLD(r) : r-limited Delaunay graph, 15

Gvis,Q : visibility graph in Q, 16

Gvis-disk,Q : range-limited visibility graph in Q, 16

iF : Xn → F(X) : natural immersion of Xn into F(X), 20

IC(S) : incenter of S, 10

IR(S) : inradius of S, 10

kernel(S) : visibility kernel set of S, 7

NG : set of neighbors map of G, 17

rco(S;X) : relative convex hull of S in X, 9

Ve(Q) : vertices of Q, 7

Vi(p;S) : set of all points in S visible from p, 7

Vidisk(p;S) : set of all points in S within a distance r and visible from
p, 7

Vi(P) : Voronoi cell of pi, 12

Vi,r(P) : r-limited Voronoi cell of pi, 12

V(P) : Voronoi partition generated by P = {p1, . . . , pn}, 12

Vr(P) : r-limited Voronoi partition generated by P = {p1, . . . , pn},
12
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