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Chapter One

An introduction to distributed algorithms

Graph theory, distributed algorithms, and linear distributed algorithms are
a fascinating scientific subject. In this chapter we provide a broad introduc-
tion to distributed algorithms by reviewing some preliminary graphical con-
cepts and by studying some simple algorithms. We begin the chapter with
one section introducing some basic notation and another section stating a
few useful facts from matrix theory, dynamical systems, and convergence
theorems based on invariance principles. In the third section of the chapter,
we provide a primer on graph theory with a particular emphasis on alge-
braic aspects, such as the properties of adjacency and Laplacian matrices
associated to a weighted digraph. In the next section of the chapter, we in-
troduce the notion of synchronous network and of distributed algorithm. We
state various complexity notions and study them in simple example prob-
lems such as the broadcast problem, the tree computation problem, and the
leader election problem. In the fifth section of the chapter, we discuss linear
distributed algorithms. We focus on linear algorithms defined by sequences
of stochastic matrices and review the results on their convergence proper-
ties. We end the chapter with three sections on, respectively, bibliographical
notes, proofs of the results presented in the chapter, and exercises.

1.1 ELEMENTARY CONCEPTS AND NOTATION

1.1.1 Sets and maps

We assume that the reader is familiar with basic notions from topology,
such as the notions of open, closed, bounded, and compact sets. In this
section, we just introduce some basic notation. We let x ∈ S denote a point
x belonging to a set S. If S is finite, we let |S| denote the number of its
elements. For a set S, we let P(S) and F(S) denote the collection of subsets
of S and the collection of finite subsets of S, respectively. The empty set
is denoted by ∅. The interior and the boundary of a set S are denoted by
int(S) and ∂S, respectively. If R is a subset of or equal to S, then we write
R ⊂ S. If R is a strict subset of S, then we write R ( S. We describe
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subsets of S defined by specific conditions via the notation

{x ∈ S | condition(s) on x}.

Given two sets S1 and S2, we let S1 ∪S2, S1 ∩S2, and S1 × S2 denote
the union, intersection, and Cartesian product of S1 and S2, respectively.
Given a collection of sets {Sa}a∈A indexed by a set A, we interchangeably
denote their Cartesian product by

∏

a∈A Sa or by
∏{Sa | a ∈ A}. We

adopt analogous notations for union and intersection. We denote by Sn the
Cartesian product of n copies of the same S. The diagonal set diag(Sn) of
Sn is given by diag(Sn) = {(s, . . . , s) ∈ Sn | s ∈ S}. The set S1 \S2 contains
all points in S1 that do not belong to S2.

We let N and Z≥0 denote the set of natural numbers and of non-negative
integers, respectively. We let R, R>0, R≥0, and C denote the set of real
numbers, strictly positive real numbers, non-negative real numbers, and
complex numbers, respectively. The sets Rd, Cd, and Sd ⊂ Rd+1 are the
d-dimensional Euclidean space, the d-dimensional complex space, and the
d-dimensional sphere, respectively. The tangent space of Rd, denoted by
TRd, is the set of all vectors tangent to Rd. Note that TRd can be identified
with Rd×Rd by mapping a vector v tangent to Rd at x ∈ Rd to the pair (x, v).
Likewise, TSd is the set of all vectors tangent to Sd, and can be identified with
Sd ×Rd. The Euclidean space Rd contains the vectors 0d = (0, . . . , 0), 1d =
(1, . . . , 1), and the standard basis e1 = (1, 0, . . . , 0), . . . ,ed = (0, . . . , 0, 1).
Given a < b, we let [a, b] and ]a, b[ denote the closed interval and the open
interval between a and b, respectively.

Given two sets S and T , we let f : S → T denote a map from S to T ,
that is, a unique way of associating an element of T to an element of S.
The image of the map f : S → T is the set image(f) = {f(s) ∈ T | s ∈ S}.
Given the map f : S → T and a set S1 ⊂ S, we let f(S1) = {f(s) | s ∈ S1}
denote the image of the set S1 under the map f . Given f : S → T and
g : U → S, we let f ◦ g : U → T , defined by f ◦ g (u) = f(g(u)), denote
the composition of f and g. The map idS : S → S is the identity map on
S. Given f : S → R, the support of f is the set of elements s such that
f(s) 6= 0. Given a subset R ( S, the indicator map 1R : S → R associated
with R is given by 1R(q) = 1 if q ∈ R, and 1R(q) = 0 if q 6∈ R. Given
two sets S and T , a set-valued map, denoted by h : S ⇉ T , associates to
an element of S a subset of T . Given a map f : S → T , the inverse map
f−1 : T ⇉ S is defined by

f−1(t) = {s ∈ S | f(s) = t}.

If f is a real-valued function, that is, a function of the form f : S → R,
then f−1(x) ⊂ S, for any x ∈ R, is a level set of f . In what follows,
we require the reader to be familiar with some basic smoothness notions
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for functions. Specifically, we will use the notions of locally and globally
Lipschitz functions, differentiable, piecewise differentiable and continuously
differentiable functions, and functions that are multiple times differentiable.

Finally, we introduce the so-called Bachmann–Landau symbols. For f, g :
N → R≥0, we say that f ∈ O(g) (resp., f ∈ Ω(g)) if there exist n0 ∈ N and
K ∈ R>0 (resp., k ∈ R>0) such that f(n) ≤ Kg(n) for all n ≥ n0 (resp.,
f(n) ≥ kg(n) for all n ≥ n0). If f ∈ O(g) and f ∈ Ω(g), then we use the
notation f ∈ Θ(g).

1.1.2 Distance functions

A function dist : S × S → R≥0 defines a distance on a set S if it satisfies:
(i) dist(x, y) = 0 if and only if x = y; (ii) dist(x, y) = dist(y, x), for all
x, y ∈ S; and (iii) dist(x, y) ≤ dist(x, z) + dist(z, y), for all x, y, z ∈ S. The
pair (S, dist) is usually called a metric space.

Some relevant examples of distance functions include the following:

Lp-distance on Rd. For p ∈ [1, +∞[, consider the Lp-norm on Rd defined

by ‖x‖p = (
∑d

i=1 |xi|p)1/p. For p = +∞, consider the L∞-norm on
Rd defined by ‖x‖∞ = maxi∈{1,...,d} |xi|. Any of these norms defines

naturally a Lp-distance in Rd by distp(x, y) = ‖y − x‖p. In partic-
ular, the most widely used is the Euclidean distance, corresponding
to p = 2. Unless otherwise noted, it is always understood that Rd is
endowed with this notion of distance. We will also use the L1- and
the L∞-distances. Finally, it is convenient to define the norm ‖z‖C of
a complex number z ∈ C to be the Euclidean norm of z regarded as a
vector in R2.

Geodesic distance on Sd. Another example is the notion of geodesic dis-
tance on Sd. This is defined as follows. For x, y ∈ Sd, distg(x, y) is
the length of the shortest curve in Sd connecting x and y. We will
use this notion of distance in dimensions d = 1 and d = 2. On the
unit circle S1, by convention, let us define positions as angles measured
counterclockwise from the positive horizontal axis. Then, the geodesic
distance can be expressed as

distg(x, y) = min{distc(x, y), distcc(x, y)}, x, y ∈ S1,

where distc(x, y) = (x − y) mod 2π is the clockwise distance and
distcc(x, y) = (y − x) mod 2π is the counterclockwise distance. Here
the clockwise distance between two angles is the path length from an
angle to the other traveling clockwise, and x mod 2π is the remainder
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Figure 1.1 Open balls (dashed lines), a closed ball (solid line), and an open lune for the
Euclidean distance on the plane.

of the division of x by 2π. On the sphere S2, the geodesic distance can
be computed as follows. Given x, y ∈ S2, one considers the great circle
determined by x and y. Then, the geodesic distance between x and y
is exactly the length of the shortest arc in the great circle connecting
x and y.

Cartesian product distance on Rd1 × Sd2. Consider Rd1 endowed with
an Lp-distance, p ∈ [1, +∞], and Sd2 endowed with the geodesic dis-
tance. Given (x1, y1), (x2, y2) ∈ Rd1 ×Sd2 , their Cartesian product dis-
tance is given by distp(x1, x2) + distg(y1, y2). Unless otherwise noted,
it is understood that Rd1 ×Sd2 is endowed with the Cartesian product
distance (dist2, distg).

Given a metric space (S, dist), the open and closed balls of center x ∈ S
and radius ε ∈ R>0 are defined by, respectively,

B(x, ε) = {y ∈ S | dist(x, y) < ε},
B(x, ε) = {y ∈ S | dist(x, y) ≤ ε}.

Consider a point x ∈ X and a set S ⊂ X. A neighborhood of a point
x ∈ X is a subset of X that contains an open ball centered at x. A neigh-
borhood of a set Y ⊂ X is a subset of X that, for each point y ∈ Y ,
contains an open ball centered at y. The open lune associated to x, y ∈ S is
B(x,dist(x, y))∩B(y, dist(x, y)). These notions are illustrated in Figure 1.1
for the plane equipped with the Euclidean distance.

Given a metric space (S, dist), the distance between a point x ∈ S and a
set W ⊂ S is the infimum of all distances between x and each of the points
in W . Formally, we set

dist(x, W ) = inf{dist(x, y) | y ∈ W}.

The projection of a point x ∈ S onto a set W ⊂ S is the set-valued map
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projW : S ⇉ W defined by

projW (x) = {y ∈ W | dist(x, y) = dist(x, W )}.
If W is a closed set, then projW (x) 6= ∅ for any x ∈ S. The diameter of a
set is the maximum distance between any two points in the set; formally, we
set diam(S) = sup{dist(x, y) | x, y ∈ S}. With a slight abuse of notation,
we often use diam(P ) to denote diam({p1, . . . , pn}) for P = (p1, . . . , pn).

1.1.3 Curves

A curve is the image of a continuous map γ : [a, b] → Rd. The map γ is called
a parameterization of the curve. We usually identify a parameterization with
the curve it defines. Without loss of generality, any curve can be given a
parametrization with a = 0 and b = 1. A curve connects the two points p
and q if γ(0) = p and γ(1) = q. A curve γ : [0, 1] → Rd is not self-intersecting
if γ is injective on (0, 1). A curve is closed if γ(0) = γ(1).

A set S ⊂ Rd is path connected if any two points in S can be joined by
a curve. A set S ⊂ X is simply connected if it is path connected and any
not self-intersecting closed curve can be continuously deformed to a point in
the set; that is, for any injective continuous map γ : [0, 1] → S that satisfies
γ(0) = γ(1), there exist p ∈ S and a continuous map H : [0, 1] × [0, 1] → S
such that H(t, 0) = γ(t) and H(t, 1) = p for all t ∈ [0, 1]. Informally, a
simply connected set is a set that consists of a single piece and does not
have any holes.

Next, consider a piecewise continuously differentiable curve γ : [0, 1] →
Rd; the length of γ is

length(γ) =

∫ 1

0
‖γ̇(s)‖2ds,

and its arc-length parameter is

sarc(s) =

∫ s

0
‖γ̇(t)‖2dt.

Note that as the parameter t varies in [0, 1], the arc-length parameter sarc(t)
varies in [0, length(γ)]. The arc-length parameterization of the curve is the
map γarc : [0, length(γ)] → Rd defined by the equation γarc(sarc(s)) = γ(s).
With a slight abuse of notation, we will often drop the subindex arc and
denote the arc-length parameterization by γ too.

For closed, not self-intersecting curves in the plane, we introduce the
notion of signed and absolute curvatures as follows. Let γ : [0, length(γ)] →
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R2 be the counterclockwise arc-length parameterization of a curve. Assume
γ is closed, not self-intersecting and twice continuously differentiable. Define
the tangent vector γ′ : [0, length(γ)] → R2 by γ′(s) = dγ

ds . Note that the
tangent vector has unit length, that is, ‖γ′(s)‖2 = 1 for all s. Additionally,
define the outward normal vector nout : [0, length(γ)] → R2 to be the unit-
length vector that is point-wise orthogonal to the tangent vector and directed
outside the set enclosed by the closed curve γ. With these notations, the
signed curvature κsigned : [0, length(γ)] → R is defined by requiring that it
satisfies

γ′′(s) = −κsigned(s) nout(s), and n′
out(s) = κsigned(s)γ

′(s).

If the set enclosed by the closed curve γ is strictly convex, then the signed
curvature of γ is strictly positive. In general, the (absolute) curvature κabs :
[0, length(γ)] → R≥0 and the radius of curvature ρ : [0, length(γ)] → R≥0 of
the curve γ are defined by, respectively,

κabs(s) = |κsigned(s)|, and ρ(s) = |κsigned(s)|−1.

1.2 MATRIX THEORY

Here, we present basic notions and results about matrix theory, following the
treatments in Horn and Johnson (1985) and Meyer (2001). We let Rn×m and
Cn×m denote the set of n×m real and complex matrices. Given a real matrix
A and a complex matrix U , we let AT and U∗ denote the transpose of A
and the conjugate transpose matrix of U , respectively. We let In denote the
n × n identity matrix. For a square matrix A, we write A > 0, resp. A ≥ 0,
if A is symmetric positive definite, resp. symmetric positive semidefinite.
For a real matrix A, we let kernel(A) and rank(A) denote the kernel and
rank of A, respectively. Given a vector v, we let diag(v) denote the square
matrix whose diagonal elements are equal to the component v and whose
off-diagonal elements are zero.

1.2.1 Matrix sets

A matrix A ∈ Rn×n with entries aij , i, j ∈ {1, . . . , n}, is

(i) Orthogonal if AAT = In, and is special orthogonal if it is orthogonal
with det(A) = +1. The set of orthogonal matrices is a group.1

1A set G with a binary operation, denoted by G × G ∋ (a, b) 7→ a ⋆ b ∈ G, is a group if: (i)
a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ G (associativity property); (ii) there exists e ∈ G such that
a ⋆ e = e ⋆ a = a for all a ∈ G (existence of an identity element); and (iii) there exists a−1 ∈ G
such that a ⋆ a−1 = a−1 ⋆ a = e for all a ∈ G (existence of inverse elements).

10

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 1: An introduction to distributed algorithms

(ii) Nonnegative (resp., positive) if all its entries are nonnegative (resp.,
positive).

(iii) Row-stochastic (or stochastic for brevity) if it is nonnegative and
∑n

j=1 aij = 1, for all i ∈ {1, . . . , n}; in other words, A is row-
stochastic if

A1n = 1n.

(iv) Column-stochastic if it is nonnegative and
∑n

i=1 aij = 1, for all
j ∈ {1, . . . , n}.

(v) Doubly stochastic if A is row-stochastic and column-stochastic.

(vi) Normal if AT A = AAT .

(vii) A permutation matrix if A has precisely one entry equal to one
in each row, one entry equal to one in each column, and all other
entries equal to zero. The set of permutation matrices is a group.

The scalars µ1, . . . , µk are convex combination coefficients if µi ≥ 0, for
i ∈ {1, . . . , k}, and

∑k
i=1 µi = 1. (Each row of a row-stochastic matrix

contains convex combination coefficients.) A convex combination of vectors
is a linear combination of the vectors with convex combination coefficients.
A subset U of a vector space V is convex if the convex combination of any
two elements of U takes value in U . For example, the set of stochastic
matrices and the set of doubly stochastic matrices are convex.

Theorem 1.1 (Birkhoff–von Neumann). A square matrix is doubly
stochastic if and only if it is a convex combination of permutation matri-
ces.

Next, we review two families of relevant matrices with useful properties.
Toeplitz matrices are square matrices with equal entries along each diagonal
parallel to the main diagonal. In other words, a Toeplitz matrix is a matrix
of the form

































t0 t1
. . .

. . .
. . . tn−2 tn−1

t−1 t0 t1
. . .

. . .
. . . tn−2

. . . t−1 t0 t1
. . .

. . .
. . .

. . .
. . . t−1 t0 t1

. . .
. . .

. . .
. . .

. . . t−1 t0 t1
. . .

t−n+2
. . .

. . .
. . . t−1 t0 t1

t−n+1 t−n+2
. . .

. . .
. . . t−1 t0

































.
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An n × n Toeplitz matrix is determined by its first row and column, and
hence by 2n − 1 scalars.

Circulant matrices are square Toeplitz matrices where each two subse-
quent row vectors vi and vi+1 have the following two properties: the last
entry of vi is the first entry of vi+1 and the first (n− 1) entries of vi are the
second (n−1) entries of vi+1. In other words, a circulant matrix is a matrix
of the form

































c0 c1
. . .

. . .
. . . cn−2 cn−1

cn−1 c0 c1
. . .

. . .
. . . cn−2

. . . cn−1 c0 c1
. . .

. . .
. . .

. . .
. . . cn−1 c0 c1

. . .
. . .

. . .
. . .

. . . cn−1 c0 c1
. . .

c2
. . .

. . .
. . . cn−1 c0 c1

c1 c2
. . .

. . .
. . . cn−1 c0

































,

and, therefore, it is determined by its first row.

1.2.2 Eigenvalues, singular values, and induced norms

We require the reader to be familiar with the notion of eigenvalue and of
simple eigenvalue, that is, an eigenvalue with algebraic and geometric multi-
plicity2 equal to 1. The set of eigenvalues of a matrix A ∈ Rn×n is called its
spectrum and is denoted by spec(A) ⊂ C. The singular values of the matrix
A ∈ Rn×n are the positive square roots of the eigenvalues of AT A.

We begin with a well-known property of the spectrum of a matrix.

Theorem 1.2 (Geršgorin disks). Let A be an n × n matrix. Then

spec(A) ⊂
⋃

i∈{1,...,n}

{

z ∈ C
∣

∣ ‖z − aii‖C ≤
n

∑

j=1,j 6=i

|aij |
}

.

Next, we review a few facts about normal matrices, their eigenvectors and
their singular values.

2The algebraic multiplicity of an eigenvalue is the multiplicity of the corresponding root of
the characteristic equation. The geometric multiplicity of an eigenvalue is the number of linearly
independent eigenvectors corresponding to the eigenvalue. The algebraic multiplicity is greater
than or equal to the geometric multiplicity.
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Lemma 1.3 (Normal matrices). For a matrix A ∈ Rn×n, the following
statements are equivalent:

(i) A is normal;

(ii) A has a complete orthonormal set of eigenvectors; and

(iii) A is unitarily similar to a diagonal matrix, that is, there exists a
unitary3 matrix U such that U∗AU is diagonal.

Lemma 1.4 (Singular values of a normal matrix). If a normal matrix
has eigenvalues {λ1, . . . , λn}, then its singular values are {|λ1|, . . . , |λn|}.

It is well known that real symmetric matrices are normal, are diagonaliz-
able by orthogonal matrices, and have real eigenvalues. Additionally, circu-
lant matrices are normal.

We conclude by defining the notion of induced norm of a matrix. For
p ∈ N∪{∞}, the p-induced norm of A ∈ Rn×n is

‖A‖p = max{‖Ax‖p | ‖x‖p = 1}.
One can see that

‖A‖1 = max
j∈{1,...,n}

n
∑

i=1

|aij |, ‖A‖∞ = max
i∈{1,...,n}

n
∑

j=1

|aij |,

‖A‖2 = max{σ | σ is a singular value of A}.

1.2.3 Spectral radius and convergent matrices

The spectral radius of a matrix A ∈ Rn×n is

ρ(A) = max{‖λ‖C | λ ∈ spec(A)}.
In other words, ρ(A) is the radius of the smallest disk centered at the origin
that contains the spectrum of A.

Lemma 1.5 (Induced norms and spectral radius). For any square
matrix A and in any norm p ∈ N∪{∞}, ρ(A) ≤ ‖A‖p.

We will often deal with matrices with an eigenvalue equal to 1 and all
other eigenvalues strictly inside the unit disk. Accordingly, we generalize the
notion of spectral radius as follows. For a square matrix A with ρ(A) = 1,
we define the essential spectral radius

ρess(A) = max{‖λ‖C | λ ∈ spec(A) \ {1}}. (1.2.1)

3A complex matrix U ∈ Cn×n is unitary if U−1 = U∗.
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Next, we will consider matrices with useful convergence properties.

Definition 1.6 (Convergent and semi-convergent matrices). A ma-
trix A ∈ Rn×n is

(i) semi-convergent if limℓ→+∞ Aℓ exists; and

(ii) convergent if it is semi-convergent and limℓ→+∞ Aℓ = 0. •

These two notions are characterized as follows.

Lemma 1.7 (Convergent and semi-convergent matrices). The square
matrix A is convergent if and only if ρ(A) < 1. Furthermore, A is semi-
convergent if and only if the following three properties hold:

(i) ρ(A) ≤ 1;

(ii) ρess(A) < 1, that is, 1 is an eigenvalue and 1 is the only eigenvalue
on the unit circle; and

(iii) the eigenvalue 1 is semisimple, that is, it has equal algebraic and
geometric multiplicity (possibly larger than one).

In other words, A is semi-convergent if and only if there exists a nonsin-
gular matrix T such that

A = T

[

Ik 0
0 B

]

T−1,

where B ∈ R(n−k)×(n−k) is convergent, that is, ρ(B) < 1. With this notation,
we have ρess(A) = ρ(B) and the algebraic and geometric multiplicity of the
eigenvalue 1 is k.

1.2.4 Perron–Frobenius theory

Positive and nonnegative matrices have useful spectral properties. In what
follows, the first theorem amounts to the original Perron’s Theorem for posi-
tive matrices and the following theorems are the extension due to Frobenius
for certain nonnegative matrices. We refer to (Horn and Johnson, 1985,
Chapter 8) for a detailed treatment.

Theorem 1.8 (Perron-Frobenius for positive matrices). If the square
matrix A is positive, then

(i) ρ(A) > 0;

14

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 1: An introduction to distributed algorithms

(ii) ρ(A) is an eigenvalue, it is simple, and ρ(A) is strictly larger than
the magnitude of any other eigenvalue; and

(iii) ρ(A) has an eigenvector with positive components.

Requiring the matrix to be strictly positive is a key assumption that limits
the applicability of this theorem. It turns out that it is possible to obtain
the same results of the theorem under weaker assumptions.

Definition 1.9 (Irreducible matrix). A nonnegative matrix A ∈ Rn×n is
irreducible if, for any nontrivial partition J ∪K of the index set {1, . . . , n},
there exist j ∈ J and k ∈ K such that ajk 6= 0.

Remark 1.10 (Properties of irreducible matrices). An equivalent def-
inition of irreducibility is given as follows. A matrix A ∈ Rn×n is irreducible
if it is not reducible, and is reducible if either:

(i) n = 1 and A = 0; or

(ii) there exists a permutation matrix P ∈ Rn×n and a number r ∈
{1, . . . , n− 1} such that P T AP is block upper triangular with diag-
onal blocks of dimensions r × r and (n − r) × (n − r).

It is an immediate consequence that the property of irreducibility depends
upon only the patterns of zeros and nonzero elements of the matrix. •

We can now weaken the assumption in Theorem 1.8 and obtain a compa-
rable, but weaker, result for irreducible matrices.

Theorem 1.11 (Perron–Frobenius for irreducible matrices). If the
nonnegative square matrix A is irreducible, then

(i) ρ(A) > 0;

(ii) ρ(A) is an eigenvalue, and it is simple; and

(iii) ρ(A) has an eigenvector with positive components.

In general, the spectral radius of a nonnegative irreducible matrix does
not need to be the only eigenvalue of maximum magnitude. For example, the

matrix

[

0 1
1 0

]

has eigenvalues {1,−1}. In other words, irreducible matrices

do indeed have weaker spectral properties than positive matrices. Therefore,
it remains unclear which nonnegative matrices have the same properties as
those stated for positive matrices in Theorem 1.8.

Definition 1.12 (Primitive matrix). A nonnegative square matrix A is
primitive if there exists k ∈ N such that Ak is positive. •
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It is easy to see that if a nonnegative square matrix is primitive, then it is
irreducible. In later sections we will provide a graph-theoretical characteri-
zation of primitive matrices; for now, we are finally in a position to sharpen
the results of Theorem 1.11.

Theorem 1.13 (Perron–Frobenius for primitive matrices). If the
nonnegative square matrix A is primitive, then

(i) ρ(A) > 0;

(ii) ρ(A) is an eigenvalue, it is simple, and ρ(A) is strictly larger than
the magnitude of any other eigenvalue; and

(iii) ρ(A) has an eigenvector with positive components.

We conclude this section by noting the following convergence property
that is an immediate corollary to Lemma 1.7 and to Theorem 1.13.

Corollary 1.14. If the nonnegative square matrix A is primitive, then the
matrix ρ(A)−1A is semi-convergent.

1.3 DYNAMICAL SYSTEMS AND STABILITY THEORY

In this section, we introduce some basic concepts about dynamical and con-
trol systems; see, for example Sontag (1998) and Khalil (2002). We discuss
stability and attractivity notions as well as the invariance principle. We con-
clude with a treatment of set-valued systems and time-dependent systems.

1.3.1 State machines and dynamical systems

Here, we introduce three classes of dynamical and control systems: (i) state
machines or discrete-time discrete-space dynamical systems; (ii) discrete-
time continuous-space control systems; and (iii) continuous-time continuous-
space control systems.

We begin with our specific definition of state machine. A (deterministic,
finite) state machine is a tuple (X, U, X0, f), where X is a finite set called
the state space, U is a finite set called the input space, X0 ⊂ X is the set
of allowable initial states, and f : X × U → X is the evolution map. Given
an input sequence u : Z≥0 → U , the state machine evolution x : Z≥0 → X
starting from x(0) ∈ X0 is given by

x(ℓ + 1) = f(x(ℓ), u(ℓ)), ℓ ∈ Z≥0.

We will often refer to a state machine as a processor. Note that, in a state
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machine, both the state and the input spaces are finite or discrete. Often
times, we will find it useful to consider systems that evolve in continuous
space and that are time dependent. Let us then provide two additional
definitions in the following paragraphs.

A (time-dependent) discrete-time continuous-space control system is a tu-
ple (X, U, X0, f), where X is a d-dimensional space chosen among Rd, Sd,
and the Cartesian products Rd1 × Sd2 , for some d1 + d2 = d, U is a com-
pact subset of Rm containing 0m, X0 ⊂ X, and f : Z≥0 × X × U → X is
a continuous map. As before, the individual objects X, U , X0, and f are
termed the state space, input space, allowable initial states, and evolution
map, respectively. Given an input sequence u : Z≥0 → U , the evolution
x : Z≥0 → X of the dynamical system starting from x(0) ∈ X0 is given by

x(ℓ + 1) = f(ℓ, x(ℓ), u(ℓ)), ℓ ∈ Z≥0.

A (time-dependent) continuous-time continuous-space control system is a
tuple (X, U, X0, f), where X is a d-dimensional space chosen among Rd,
Sd, and the Cartesian products Rd1 × Sd2 , for some d1 + d2 = d, U is a
compact subset of Rm containing 0m, X0 ⊂ X, and f : R≥0 ×X ×U → TX
is a continuously differentiable map. The individual objects X, U , X0,
and f are termed the state space, input space, allowable initial states, and
control vector field, respectively. Given an input function u : R≥0 → U , the
evolution x : R≥0 → X of the dynamical system starting from x(0) ∈ X0 is
given by

ẋ(t) = f(t, x(t), u(t)), t ∈ R≥0.

We often consider the case when the control vector field can be written as
f(t, x, u) = f0(t, x) +

∑m
a=1 fa(t, x)ua, for some continuously differentiable

maps f0, f1, . . . , fm : R≥0 × X → TX. Each of these individual maps is
called a (time-dependent) vector field, and f is said to be a control-affine
vector field. The control vector field f is driftless if f(t, x,0m) = 0 for all
x ∈ X and t ∈ R≥0.

Finally, the term dynamical system denotes a control system that is not
subject to any external control action; this terminology is applicable both
in discrete and continuous time. Furthermore, we will sometimes neglect to
define a specific set of allowable initial states; in this case we mean that any
point in the state space is allowable as initial condition.
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1.3.2 Stability and attractivity notions

In this section, we consider a continuous-space dynamical system (X, f). We
first consider the discrete-time case and later we briefly present the analogous
continuous-time case. We study dynamical systems that are time-invariant.
In discrete time, a time-invariant system is simply described by an evolution
map of the form f : X → X.

Definition 1.15 (Equilibrium point). A point x∗ ∈ X is an equilibrium
point for the time-invariant dynamical system (X, f) if the constant curve
x : Z≥0 → X, defined by x(ℓ) = x∗ for all ℓ ∈ Z≥0, is an evolution of the
system. •

It can immediately be seen that a point x∗ is an equilibrium point if and
only if f(x∗) = x∗. We denote the set of equilibrium points of the dynamical
system by Equil(X, f).

Definition 1.16 (Trajectories and sets). Let (X, f) be a time-invariant
dynamical system and let W be a subset of X. Then:

(i) The set W is positively invariant for (X, f) if each evolution with
initial condition in W remains in W for all subsequent times.

(ii) A trajectory x : Z≥0 → X approaches a set W ⊂ X if, for every
neighborhood Y of W , there exists a time ℓ0 > 0 such that x(ℓ)
takes values in Y for all subsequent times ℓ ≥ ℓ0. In such a case, we
write x(ℓ) → W as ℓ → +∞. •

In formal terms, W is positively invariant if x(0) ∈ W implies x(ℓ) ∈ W
for all ℓ ∈ Z≥0, where x : Z≥0 → X is the evolution of (X, f) starting from
x(0).

Definition 1.17 (Stability and attractivity). For a time-invariant dy-
namical system (X, f), a set S is:

(i) stable if, for any neighborhood Y of S, there exists a neighborhood
W of S such that every evolution of (X, f) with initial condition in
W remains in Y for all subsequent times;

(ii) unstable if it is not stable;

(iii) locally attractive if there exists a neighborhood Y of S such that
every evolution with initial condition in Y approaches the set S;
and

(iv) locally asymptotically stable if it is stable and locally attractive.
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Additionally, the set S is globally attractive if every evolution of the dynam-
ical system approaches it and it is globally asymptotically stable if it is stable
and globally attractive. •

Remark 1.18 (Continuous-time dynamical systems). It is straight-
forward to extend the previous definitions to the setting of continuous-time
continuous-space dynamical systems. These notions are illustrated in Fig-
ure 1.2. •

S

Y

W
S

Y

W
S

Y

W

Figure 1.2 Illustrations of stability, asymptotic stability, and instability.

1.3.3 Invariance principles

Before discussing various versions of the invariance principle, we begin with
a useful notion. Given a discrete-time time-invariant continuous-space dy-
namical system (X, f) and a set W ⊂ X, a function V : X → R is non-
increasing along f in W if V (f(x)) ≤ V (x) for all x ∈ W . (Such functions
are often referred to as Lyapunov functions.) In other words, if a function
V is non-increasing along f , then the composite function ℓ 7→ V (y(ℓ)) is
non-increasing for each evolution y of the dynamical system (X, f). The
following theorem exploits this fact to establish useful properties of the evo-
lutions of (X, f).

Theorem 1.19 (LaSalle Invariance Principle for discrete-time dy-
namical systems). Let (X, f) be a discrete-time time-independent dynam-
ical system. Assume that:

(i) there exists a closed set W ⊂ X that is positively invariant for
(X, f);

(ii) there exists a function V : X → R that is non-increasing along f
on W ;

(iii) all evolutions of (X, f) with initial conditions in W are bounded;
and

(iv) f and V are continuous on W .
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Then each evolution with initial condition in W approaches a set of the form
V −1(c)∩S, where c is a real constant and S is the largest positively invariant
set contained in {w ∈ W | V (f(w)) = V (w)}.

We refer to Section 1.8.1 for a discussion about the proof of this result.
Next, we present the continuous-time version of the invariance principle. In
other words, we now assume that (X, f) is a continuous-time time-invariant
continuous-space dynamical system.

We begin by revisiting the notion of non-increasing function. Given a
continuously differentiable function V : X → R, the Lie derivative of V
along f , denoted by LfV : X → R, is defined by

LfV (x) =
d

dt
V (γ(t))

∣

∣

∣

t=0
,

where the trajectory γ : ] − ε, ε[ → X satisfies γ̇(t) = f(γ(t)) and γ(0) = x.
If X = Rd, then we can write x in components (x1, . . . , xd) and we can give
the following explicit formula for the Lie derivative:

LfV (x) =
d

∑

i=1

∂V

∂xi
(x)fi(x).

Similar formulas can be obtained for more general state spaces. Note that,
given a set W ⊂ X, a function V : X → R is non-increasing along f in W
if LfV (x) ≤ 0 for all x ∈ W .

Finally, we state the invariance principle for continuous-time systems.

Theorem 1.20 (LaSalle Invariance Principle for continuous-time
dynamical systems). Let (X, f) be a continuous-time time-independent
dynamical system. Assume that:

(i) there exists a closed set W ⊂ X that is positively invariant for
(X, f);

(ii) there exists a function V : X → R that is non-increasing along f
on W ;

(iii) all evolutions of (X, f) with initial conditions in W are bounded;
and

(iv) f and V are continuously differentiable4 on W .

Then, each evolution with initial condition in W approaches a set of the
form V −1(c) ∩ S, where c is a real constant and S is the largest positively
invariant set contained in {w ∈ W | LfV (w) = 0}.

4It suffices that f be locally Lipschitz and V be continuously differentiable; see Cortés (2008a).
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1.3.4 Notions and results for set-valued systems

Next, we focus on a more sophisticated version of the LaSalle Invariance
Principle for more general dynamical systems, that is, dynamical systems
described by set-valued maps that allow for non-deterministic evolutions. To
do so, we need to present numerous notions, including set-valued dynamical
systems, closedness properties, and weak positive invariance.

Specifically, a discrete-time continuous-space set-valued dynamical system
(in short, set-valued dynamical system) is determined by a tuple (X, X0, T ),
where X is a d-dimensional space chosen among Rd, Sd, and the Cartesian
products Rd1 × Sd2 , for some d1 + d2 = d, X0 ⊂ X, and T : X ⇉ X is a
set-valued map. We assume that T assigns to each point x ∈ X a nonempty
set T (x) ⊂ X. The individual objects X, X0, and T are termed the state
space, allowable initial states, and evolution map, respectively. An evolution
of the dynamical system (X, X0, T ) is any trajectory x : Z≥0 → X satisfying

x(ℓ + 1) ∈ T (x(ℓ)), ℓ ∈ Z≥0.

Figure 1.3 illustrates this notion. In particular, a (time-invariant) discrete-
time continuous-space dynamical system (X, X0, f) can be seen as a discrete-
time continuous-space set-valued dynamical system (X, X0, T ), where the
evolution set-valued map is just the singleton-valued map x 7→ T (x) =
{f(x)}.

Figure 1.3 A discrete-time continuous-space set-valued dynamical system. A sample evo-
lution is shown dashed.

Next, we introduce a notion of continuity for set-valued maps. The evolu-
tion map T is said to be closed at x ∈ X if, for any sequences {xk | k ∈ Z≥0}
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and {yk | k ∈ Z≥0} such that

lim
k→+∞

xk = x, lim
k→+∞

yk = y, and yk ∈ T (xk),

it holds that y ∈ T (x). The evolution set-valued map T is closed at W ⊂ X
if for any x ∈ W , T is closed at x. Note that a continuous map f : X → X
is closed when viewed as a singleton-valued map.

(i) A set C ⊂ X is weakly positively invariant with respect to T if, for
any x ∈ C, there exists y ∈ C such that y ∈ T (x).

(ii) A set C ⊂ X is strongly positively invariant with respect to T if
T (x) ⊂ C for any x ∈ C.

A point x0 is said to be a fixed point of T if x0 ∈ T (x0). A continuous
function V : X → R is non-increasing along T in W ⊂ X if V (y) ≤ V (x)
for all x ∈ W and y ∈ T (x).

We finally state and prove a general version of the invariance principle,
whose proof is presented in Section 1.8.1.

Theorem 1.21 (LaSalle Invariance Principle for set-valued dis-
crete-time dynamical systems). Let (X, X0, T ) be a discrete-time set-
valued dynamical system. Assume that:

(i) there exists a closed set W ⊂ X that is strongly positively invariant
for (X, X0, T );

(ii) there exists a function V : X → R that is non-increasing along T
on W ;

(iii) all evolutions of (X, X0, T ) with initial conditions in W are bounded;
and

(iv) T is nonempty and closed at W and V is continuous on W .

Then, each evolutions with initial condition in W approaches a set of the
form V −1(c)∩ S, where c is a real constant and S is the largest weakly pos-
itively invariant set contained in {w ∈ W | ∃w′ ∈ T (w) such that V (w′) =
V (w)}.

1.3.5 Notions and results for time-dependent systems

In this final subsection, we consider time-dependent discrete-time dynamical
systems and discuss uniform stability and convergence notions. We begin
with some uniform boundedness, stability, and attractivity definitions.
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In what follows, given a time-dependent discrete-time dynamical system
(X, X0, f), an evolution with initial condition in W at time ℓ0 ∈ Z≥0 is a
trajectory x : [ℓ0, +∞[ → X of the dynamical system (X, X0, f) defined by
the initial condition x(ℓ0) = x0, for some x0 ∈ W . In other words, for time-
dependent systems we will often consider trajectories that begin at time ℓ0

not necessarily equal to zero.

Definition 1.22 (Uniformly bounded evolutions). A time-dependent
discrete-time dynamical system (X, X0, f) has uniformly bounded evolutions
if, given any bounded set Y , there exists a bounded set W such that every
evolution with initial condition in Y at any time ℓ0 ∈ Z≥0 remains in W for
all subsequent times ℓ ≥ ℓ0. •

Definition 1.23 (Uniform stability and attractivity notions). For a
time-dependent discrete-time dynamical system (X, X0, f), the set S is:

(i) uniformly stable if, for any neighborhood Y of S, there exists a
neighborhood W of S such that every evolution with initial condi-
tion in W at any time ℓ0 ∈ Z≥0 remains in Y for all subsequent
times ℓ ≥ ℓ0;

(ii) uniformly locally attractive if there exists a neighborhood Y of S
such that every evolution with initial condition in Y at any time ℓ0

approaches the set S in the following time-uniform manner:

for all ℓ0 ∈ Z≥0, for all x0 ∈ Y , and for all neighborhoods
W of S, there exists a single τ0 ∈ Z≥0 such that the
evolution x : [ℓ0, +∞[ → X defined by x(ℓ0) = x0 takes
value in W for all times ℓ ≥ ℓ0 + τ0; and

(iii) uniformly locally asymptotically stable if it is uniformly stable and
uniformly locally attractive.

Additionally, the set S is uniformly globally attractive if every evolution of
the dynamical system approaches the set in a time-uniform manner, and
it is uniformly globally asymptotically stable if it is uniformly stable and
uniformly globally attractive. •

With the same notation in the definition, the set S is (non-uniformly)
locally attractive if for all ℓ0 ∈ Z≥0, x0 ∈ Y , and neighborhoods W of S, the
evolution x : [ℓ0, +∞[ → X defined by x(ℓ0) = x0, takes value in W for all
times ℓ ≥ ℓ0 + τ0(ℓ0), for some τ0(ℓ0) ∈ Z≥0.

To establish uniform stability and attractivity results we will overapprox-
imate the evolution of the time-dependent dynamical system by considering
the larger set of evolutions of an appropriate set-valued dynamical system.
Given a time-dependent evolution map f : Z≥0×X → X, define a set-valued
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overapproximation map Tf : X ⇉ X by

Tf (x) = {f(ℓ, x) | ℓ ∈ Z≥0}.

With this notion we can state a useful result, whose proof is left to the
reader as an exercise.

Lemma 1.24 (Overapproximation Lemma). Consider a discrete-time
time-dependent dynamical system (X, X0, f):

(i) If x : [ℓ0, +∞[ → X is an evolution of the dynamical system (X, f),
then y : Z≥0 → X defined by y(ℓ) = x(ℓ + ℓ0) is an evolution of the
set-valued overapproximation system (X, Tf ).

(ii) If the set S is locally attractive for the set-valued overapproximation
system (X, Tf ), then it is uniformly locally attractive for (X, f).

In other words, every evolution of the time-dependent dynamical system
from any initial time is an evolution of the set-valued overapproximation
system and, therefore, the set of trajectories of the set-valued overapproxi-
mation system contains the set of trajectories of the original time-dependent
system. Uniform attractivity is a consequence of attractivity for the time-
invariant set-valued overapproximation.

1.4 GRAPH THEORY

Here we present basic definitions about graph theory, following the treat-
ments in the literature; see, for example Biggs (1994), Godsil and Royle
(2001), and Diestel (2005).

A directed graph—in short, digraph—of order n is a pair G = (V, E),
where V is a set with n elements called vertices (or nodes) and E is a set
of ordered pair of vertices called edges. In other words, E ⊆ V × V . We
call V and E the vertex set and edge set, respectively. When convenient,
we let V (G) and E(G) denote the vertices and edges of G, respectively. For
u, v ∈ V , the ordered pair (u, v) denotes an edge from u to v.

An undirected graph—in short, graph—consists of a vertex set V and of a
set E of unordered pairs of vertices. For u, v ∈ V and u 6= v, the set {u, v}
denotes an unordered edge. A digraph is undirected if (v, u) ∈ E anytime
(u, v) ∈ E. It is possible and convenient to identify an undirected digraph
with the corresponding graph; vice versa, the directed version of a graph
(V, E) is the digraph (V ′, E′) with the property that (u, v) ∈ E′ if and only
if {u, v} ∈ E. In what follows, our convention is to allow self-loops in both
graphs and digraphs.
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A digraph (V ′, E′) is a subgraph of a digraph (V, E) if V ′ ⊂ V and E′ ⊂ E;
additionally, a digraph (V ′, E′) is a spanning subgraph if it is a subgraph and
V ′ = V . The subgraph of (V, E) induced by V ′ ⊂ V is the digraph (V ′, E′),
where E′ contains all edges in E between two vertices in V ′. For two digraphs
G = (V, E) and G′ = (V ′, E′), the intersection and union of G and G′ are
defined by

G∩G′ = (V ∩V ′, E ∩E′),

G∪G′ = (V ∪V ′, E ∪E′).

Analogous definitions may be given for graphs.

In a digraph G with an edge (u, v) ∈ E, u is called an in-neighbor of
v, and v is called an out-neighbor of u. We let N in

G (v) (resp., N out
G (v))

denote the set of in-neighbors, (resp. the set of out-neighbors) of v in the
digraph G. We will drop the subscript when the graph G is clear from the
context. The in-degree and out-degree of v are the cardinality of N in(v) and
N out(v), respectively. A digraph is topologically balanced if each vertex has
the same in- and out-degrees (even if distinct vertices have distinct degrees).
Likewise, in an undirected graph G, the vertices u and v are neighbors if
{u, v} is an undirected edge. We let NG(v) denote the set of neighbors of
v in the undirected graph G. As in the directed case, we will drop the
subscript when the graph G is clear from the context. The degree of v is the
cardinality of N (v).

Remark 1.25 (Additional notions). For a digraph G = (V, E), the re-
verse digraph rev(G) has vertex set V and edge set rev(E) composed of all
edges in E with reversed direction. A digraph G = (V, E) is complete if
E = V × V . A clique (V ′, E′) of a digraph (V, E) is a subgraph of (V, E)
which is complete, that is, such that E′ = V ′ × V ′. Note that a clique is
fully determined by its set of vertices, and hence there is no loss of precision
in denoting it by V ′. A maximal clique V ′ of an edge of a digraph is a clique
of the digraph with the following two properties: it contains the edge, and
any other subgraph of the digraph that strictly contains (V ′, V ′×V ′) is not
a clique. •

1.4.1 Connectivity notions

Let us now review some basic connectivity notions for digraphs and graphs.
We begin with the setting of undirected graphs because of its simplicity.

A path in a graph is an ordered sequence of vertices such that any pair
of consecutive vertices in the sequence is an edge of the graph. A graph is
connected if there exists a path between any two vertices. If a graph is not
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connected, then it is composed of multiple connected components, that is,
multiple connected subgraphs. A path is simple if no vertices appear more
than once in it, except possibly for initial and final vertex. A cycle is a
simple path that starts and ends at the same vertex. A graph is acyclic if it
contains no cycles. A connected acyclic graph is a tree. A forest is a graph
that can be written as the disjoint union of trees. Trees have interesting
properties: for example, G = (V, E) is a tree if and only if G is connected
and |E| = |V | − 1. Alternatively, G = (V, E) is a tree if and only if G is
acyclic and |E| = |V | − 1. Figure 1.4 illustrates these notions.

Figure 1.4 An illustration of connectivity notions on a graph. The graph has two con-
nected components. The leftmost connected component is a tree, while the
rightmost connected component is a cycle.

Next, we generalize these notions to the case of digraphs. A directed path
in a digraph is an ordered sequence of vertices such that any ordered pair of
vertices appearing consecutively in the sequence is an edge of the digraph.
A cycle in a digraph is a directed path that starts and ends at the same
vertex and that contains no repeated vertex except for the initial and the
final vertex. A digraph is acyclic if it contains no cycles. In an acyclic graph,
every vertex of in-degree 0 is named a source, and every vertex of out-degree
0 is named a sink. Every acyclic digraph has at least one source and at least
one sink. Figure 1.5 illustrates these notions.

(a) (b)

Figure 1.5 Illustrations of connectivity notions on a digraph: (a) shows an acyclic digraph
with one sink and two sources; (b) shows a directed path which is also a cycle.

The set of cycles of a directed graph is finite. A directed graph is aperiodic
if there exists no k > 1 that divides the length of every cycle of the graph.
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In other words, a digraph is aperiodic if the greatest common divisor of
the lengths of its cycles is one. A digraph is periodic if it is not aperiodic.
Figure 1.6 shows examples of a periodic and an aperiodic digraph.

(a) (b)

Figure 1.6 (a) A periodic digraph. (b) An aperiodic digraph with cycles of length 2 and 3.

A vertex of a digraph is globally reachable if it can be reached from any
other vertex by traversing a directed path. A digraph is strongly connected
if every vertex is globally reachable. The decomposition of a digraph into
its strongly connected components and the notion of condensation digraph
are discussed in Exercise E1.13.

A directed tree (sometimes called a rooted tree) is an acyclic digraph with
the following property: there exists a vertex, called the root, such that any
other vertex of the digraph can be reached by one and only one directed
path starting at the root. In a directed tree, every in-neighbor of a vertex is
called a parent and every out-neighbor is called a child. Two vertices with
the same parent are called siblings. A successor of a vertex u is any other
node that can be reached with a directed path starting at u. A predecessor of
a vertex v is any other node such that a directed path exists starting at it and
reaching v. A directed spanning tree, or simply a spanning tree, of a digraph
is a spanning subgraph that is a directed tree. Clearly, a digraph contains a
spanning tree if and only if the reverse digraph contains a globally reachable
vertex. A (directed) chain is a directed tree with exactly one source and one
sink. A (directed) ring digraph is the cycle obtained by adding to the edge
set of a chain a new edge from its sink to its source. Figure 1.7 illustrates
some of these notions.

The proof of the following result is given in Section 1.8.2.

Lemma 1.26 (Connectivity in topologically balanced digraphs). Let
G be a digraph. The following statements hold:

(i) if G is strongly connected, then it contains a globally reachable vertex
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Figure 1.7 From left to right, tree, directed tree, chain, and ring digraphs.

and a spanning tree; and

(ii) if G is topologically balanced and contains either a globally reach-
able vertex or a spanning tree, then G is strongly connected and is
Eulerian.5

Given a digraph G = (V, E), an in-neighbor of a nonempty set of nodes
U is a node v ∈ V \ U for which there exists an edge (v, u) ∈ E for some
u ∈ U .

Lemma 1.27 (Disjoint subsets and spanning trees). Given a digraph
G with at least two nodes, the following two properties are equivalent:

(i) G has a spanning tree; and

(ii) for any pair of nonempty disjoint subsets U1, U2 ⊂ V , either U1 has
an in-neighbor or U2 has an in-neighbor.

U1

U2

(a)

U1

U2

(b)

Figure 1.8 An illustration of Lemma 1.27. The root of the spanning tree is plotted in
gray. In (a), the root is outside the sets U1 and U2. Because these sets are
non-empty, there exists a directed path from the root to a vertex in each one
of these sets. Therefore, both U1 and U2 have in-neighbors. In (b), the root is
contained in U1. Because U2 is non-empty, there exists a directed path from
the root to a vertex in U2, and, therefore, U2 has in-neighbors. The case when
the root belongs to U2 is treated analogously.

5A graph is Eulerian if it has a cycle that visits all the graph edges exactly once.
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We will postpone the proof to Section 1.8.2. The result is illustrated in
Figure 1.8. We can also state the result in terms of global reachability:
G has a globally reachable node if and only if, for any pair of nonempty
disjoint subsets U1, U2 ⊂ V , either U1 has an out-neighbor or U2 has an
out-neighbor. We let the reader give a proper definition of the out-neighbor
of a set.

1.4.2 Weighted digraphs

A weighted digraph is a triplet G = (V, E, A), where the pair (V, E) is a
digraph with nodes V = {v1, . . . , vn}, and where the nonnegative matrix
A ∈ Rn×n

≥0 is a weighted adjacency matrix with the following property: for
i, j ∈ {1, . . . , n}, the entry aij > 0 if (vi, vj) is an edge of G, and aij = 0
otherwise. In other words, the scalars aij , for all (vi, vj) ∈ E, are a set of
weights for the edges of G. Note that the edge set is uniquely determined
by the weighted adjacency matrix and it can therefore be omitted. When
convenient, we denote the adjacency matrix of a weighted digraph G by
A(G). Figure 1.9 shows an example of a weighted digraph.

1

1 2

3

2

1

4

2

6

7

64

Figure 1.9 A weighted digraph with natural weights.

A digraph G = (V, E) can be naturally thought of as a weighted digraph
by defining the weighted adjacency matrix A ∈ {0, 1}n×n as

aij =

{

1, if (vi, vj) ∈ E,

0, otherwise,
(1.4.1)

where V = {v1, . . . , vn}. The adjacency matrix of a graph is the adjacency
matrix of the directed version of the graph. Reciprocally, given a weighted
digraph G = (V, E, A), we refer to the digraph (V, E) as the unweighted ver-
sion of G and to its associated adjacency matrix as the unweighted adjacency
matrix. A weighted digraph is undirected if aij = aji for all i, j ∈ {1, . . . , n}.
Clearly, G is undirected if and only if A(G) is symmetric.

29

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 1: An introduction to distributed algorithms

Numerous concepts introduced for digraphs remain equally valid for the
case of weighted digraphs, including the connectivity notions and the defi-
nitions of in- and out-neighbors.

Finally, we generalize the notions of in- and out-degree to weighted di-
graphs. In a weighted digraph G = (V, E, A) with V = {v1, . . . , vn}, the
weighted out-degree and the weighted in-degree of vertex vi are defined by,
respectively,

dout(vi) =

n
∑

j=1

aij , and din(vi) =

n
∑

j=1

aji.

The weighted digraph G is weight-balanced if dout(vi) = din(vi) for all vi ∈ V .
The weighted out-degree matrix Dout(G) and the weighted in-degree matrix
Din(G) are the diagonal matrices defined by

Dout(G) = diag(A1n), and Din(G) = diag(AT1n).

That is, (Dout(G))ii = dout(vi) and (Din(G))ii = din(vi), respectively.

1.4.3 Distances on digraphs and weighted digraphs

We first present a few definitions for unweighted digraphs. Given a digraph
G, the (topological) length of a directed path is the number of the edges
composing it. Given two vertices u and v in the digraph G, the distance
from u to v, denoted distG(u, v), is the smallest length of any directed path
from u to v, or +∞ if there is no directed path from u to v. That is,

distG(u, v) = min
(

{length(p) | p is a directed path from u to v}∪{+∞}
)

.

Given a vertex v of a digraph G, the radius of v in G is the maximum of all
the distances from v to any other vertex in G. That is,

radius(v, G) = max{distG(v, u) | u ∈ V (G)}.
If T is a directed tree and v is its root, then the depth of T is radius(v, T ).
Finally, the diameter of the digraph G is

diam(G) = max{distG(u, v) | u, v ∈ V (G)}.
These definitions lead to the following simple results:

(i) radius(v, G) ≤ diam(G) for all vertices v of G;

(ii) G contains a spanning tree rooted at v if and only if radius(v, G) <
+∞; and

(iii) G is strongly connected if and only if diam(G) < +∞.
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The definitions of path length, distance between vertices, radius of a vertex,
and diameter of a digraph can be easily applied to undirected graphs.

Next, we consider weighted digraphs. Given two vertices u and v in the
weighted digraph G, the weighted distance from u to v, denoted wdistG(u, v),
is the smallest weight of any directed path from u to v, or +∞ if there is no
directed path from u to v. That is,

wdistG(u, v) = min
(

{weight(p) | p is a directed path from u to v}∪{+∞}
)

.

Here, the weight of a subgraph of a weighted digraph is the sum of the
weights of all the edges of the subgraph. Note that when a digraph is thought
of as a weighted digraph (with the unweighted adjacency matrix (1.4.1)), the
notions of weight and weighted distance correspond to the usual notions of
length and distance, respectively. We leave it the reader to provide the
definitions of weighted radius, weighted depth, and weighted diameter.

1.4.4 Graph algorithms

In this section, we present a few algorithms defined on graphs. We present
only high-level descriptions and we refer to Cormen et al. (2001) for a com-
prehensive discussion including a detailed treatment of computationally ef-
ficient data structures and algorithmic implementations.

1.4.4.1 Breadth-first spanning tree

Let v be a vertex of a digraph G with radius(v, G) < +∞. A breadth-first
spanning (BFS) tree of G with respect to v, denoted TBFS, is a spanning
directed tree rooted at v that contains a shortest path from v to every other
vertex of G. (Here, a shortest path is one with the shortest topological
length.) Let us provide the BFS algorithm that, given a digraph G of
order n and a vertex v with radius(v, G) < +∞, computes a BFS tree TBFS

rooted at v:

[Informal description] Initialize a subgraph to contain only the
root v. Repeat radius(v, G) times the following instructions:
attach to the subgraph all out-neighbors of the subgraph as well
as a single connecting edge for each out-neighbor. The final
subgraph is the desired directed tree.

The algorithm is formally stated as follows:
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function BFS(G, v)

1: (V1, E1) := ({v}, ∅)
2: for k = 2 to radius(v, G) do
3: find all vertices w1, . . . , wm not in Vk−1 that are out-neighbors of

some vertex in Vk−1 and, for j ∈ {1, . . . , m}, let ej be an edge
connecting a vertex in Vk−1 to wj

4: Vk := Vk−1 ∪{w1, . . . , wm}
5: Ek := Ek−1 ∪{e1, . . . , em}
6: return (Vn, En)

Note that the output of this algorithm is not necessarily unique, since the
choice of edges at step 3: in the algorithm is not unique. Figure 1.10 shows
an execution of the BFS algorithm.

Figure 1.10 Execution of the BFS algorithm. In the leftmost frame, vertex v is colored
in red. The other frames correspond to incremental additions of vertices and
edges as specified by the function BFS. The output of the algorithm is a
BFS tree of the digraph. The BFS tree is represented in the last frame with
vertices and edges colored in red.

Some properties of the BFS algorithm are characterized as follows.

Lemma 1.28 (BFS tree). For a digraph G with a vertex v, any digraph
T computed by the BFS algorithm, T ∈ BFS(G, v), has the following
properties:

(i) T is a directed tree with root v;

(ii) T contains a shortest path from v to any other vertex reachable from
v inside G, that is, if there is a path in G from v to w, then w ∈ T
and distG(v, w) = distT (v, w); and

(iii) if G contains a spanning tree rooted at v, then T is spanning too
and therefore, T is a BFS tree of G.

We leave the proof to the reader. The key property of the algorithm is that
(Vk, Ek), k ∈ {1, . . . , n}, is a sequence of directed trees with the property
that (Vk, Ek) ⊂ (Vk+1, Ek+1), for k ∈ {1, . . . , n − 1}.
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1.4.4.2 The depth-first spanning tree

Next, we define the DFS algorithm that, given a digraph G and a vertex v
with radius(v, G) < +∞, computes what we term a depth-first spanning
(DFS) tree TDFS rooted at v:

[Informal description] Visit all nodes of the graph recording the
traveled edges to form the desired tree. Visit the nodes in the
following recursive way: (1) as long as a node has an unvisited
child, visit it; (2) when the node has no more unvisited children,
then return to its parent (and recursively attempt to visit its
unvisited children).

The algorithm is formally stated as a recursive procedure, as follows:

function DFS(G, v)

1: (Vvisited, Evisited) := ({v}, ∅)
2: DFS-Visit(G, v)
3: return (Vvisited, Evisited)

function DFS-Visit(G, w)

1: for u out-neighbor of w do
2: if u does not belong to Vvisited then
3: Vvisited := Vvisited ∪{u}
4: Evisited := Evisited ∪{(w, u)}
5: DFS-Visit(G, u)

Note that the output of this algorithm is not necessarily unique, since the
order in which the vertices are chosen in step 1: of DFS-Visit is not unique.
Any digraph T computed by the DFS algorithm, T ∈ DFS(G, v), is a
directed spanning tree with root v. Figure 1.11 shows an execution of the
algorithm.

Some properties of the DFS algorithm are characterized as follows.

Lemma 1.29 (DFS tree). For a digraph G with a vertex v, any digraph
T computed by the DFS algorithm, T ∈ DFS(G, v), has the following
properties:

(i) T is a directed tree with root v; and

(ii) if G contains a spanning tree rooted at v, then T is spanning too.

Note that both BFS and DFS trees are uniquely defined once a lexico-
graphic order is introduced for the children of a node.
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Figure 1.11 Execution of the DFS algorithm. In the top leftmost frame, vertex v is
colored in red. The other frames correspond to incremental additions of
vertices and edges as specified by the function DFS. The output of the
algorithm is a DFS tree of the digraph. The DFS tree is represented in the
last frame, with vertices and edges in red.

1.4.4.3 The shortest-paths tree in weighted digraphs via the Dijkstra algorithm

Finally, we focus on weighted digraphs and on the notion of weighted path
length. Given a weighted digraph G of order n with weighted adjacency
matrix A and a vertex v with radius(v, G) < +∞, a shortest-paths tree of G
with respect to v, denoted Tshortest-paths, is a spanning directed tree rooted
at v that contains a (weighted) shortest path from v to every other vertex
of G. This tree differs from the BFS tree defined above because here the
path length is measured using the digraph weights.

We now provide the Dijkstra algorithm that, given a digraph G of
order n and a vertex v with radius(v, G) < +∞, computes a shortest-paths
tree Tshortest-paths rooted at v:

[Informal description] Incrementally construct a tree that con-
tains only shortest paths. In each round, add to the tree (1) the
node that is closest to the source and is not yet in the tree, and
(2) the edge corresponding to the shortest path. The weighted
distance to the source (required to perform step (1)) is computed
via an array of distance estimates that is updated as follows:
when a node is added to the tree, the distance estimates of all
its out-neighbors are updated.

The algorithm is formally stated as follows:

function Dijkstra
(

(V, E, A), v
)

1: Tshortest-paths := ∅
% Initialize estimated distances and estimated parent nodes

2: for u ∈ V do
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3: dist(u) :=

{

0, u = v,

+∞, otherwise.

4: parent(u) := u
% Main loop to grow the tree and update estimates

5: while (Tshortest-paths does not contain all vertices) do
6: find vertex u outside Tshortest-paths with smallest dist(u)
7: add to Tshortest-paths the vertex u
8: if u 6= v, add to Tshortest-paths the edge (parent(u), u)
9: for each node w that is an out-neighbor of u in (V, E, A) do

10: if dist(w) > dist(u) + auw then
11: dist(w) := dist(u) + auw

12: parent(w) := u
13: return Tshortest-paths

Note that the output of this algorithm is not necessarily unique, since the
choice of vertex at step 6: in the algorithm is not unique. Figure 1.12 shows
an execution of the the Dijkstra algorithm.
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Figure 1.12 Execution of the Dijkstra algorithm on the weighted digraph plotted in
Figure 1.9. In the top leftmost frame, vertex v is colored in gray. The other
frames correspond to incremental additions of vertices and edges as specified
by the function Dijkstra. The output of the algorithm is a shortest-paths
tree of the digraph rooted at v. This tree is represented in the last frame with
vertices and edges colored in gray.

The following properties of the Dijkstra algorithm mirror those of the
BFS algorithm in Lemma 1.28.

Lemma 1.30 (Dijkstra algorithm). For a weighted digraph G with a
vertex v, any digraph T computed by the Dijkstra algorithm, T ∈
Dijkstra(G, v), has the following properties:
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(i) T is a directed tree with root v;

(ii) T contains a shortest path from v to any other vertex reachable from
v inside G, that is, if there is a path in G from v to w, then w ∈ T
and wdistG(v, w) = wdistT (v, w); and

(iii) if G contains a spanning tree rooted at v, then T is spanning too,
and therefore, T is a shortest-paths tree of G.

1.4.4.4 On combinatorial optimization problems

We conclude this section on graph algorithms with a brief mention of classic
optimization problems defined on graphs. Standard references on combi-
natorial optimization include Vazirani (2001) and Korte and Vygen (2005).
Given a weighted directed graph G, classical combinatorial optimization
problems include the following:

Minimum-weight spanning tree. A minimum-weight spanning tree of
G, denoted MST, is a spanning tree with the minimum possible weight.
In order for the MST to exist, G must contain a spanning tree. If all
the weights of the individual edges are different, then the MST is
unique.

Traveling salesperson problem. A traveling salesperson tour of G, de-
noted TSP, is a cycle that passes through all the nodes of the digraph
and has the minimum possible weight. In order for the TSP to exist,
G must contain a cycle through all nodes.

Multicenter optimization problems. Given a weighted digraph G with
vertices V = {v1, . . . , vn} and a set U = {u1, . . . , uk} ⊂ V , the
weighted distance from v ∈ V to the set U is the smallest weighted
distance from v to any vertex in {u1, . . . , uk}. We now consider the
cost functions Hmax,HΣ : V k → R defined by

Hmax(u1, . . . , uk) = max
i∈{1,...,n}

min
h∈{1,...,k}

wdistG(vi, uh),

HΣ(u1, . . . , uk) =
n

∑

i=1

min
h∈{1,...,k}

wdistG(vi, uh).

The k-center problem and the k-median problem consist of finding a set
of vertices {u1, . . . , uk} that minimizes the k-center function Hmax and
the k-median function HΣ, respectively. We refer to Vazirani (2001)
for a discussion of the k-center and k-median problems (as well as
the more general uncapacited facility location problem) over complete
undirected graphs with edge costs satisfying the triangle inequality.
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The Euclidean versions of these combinatorial optimization problems refer
to the situation where one considers a weighted complete digraph whose
vertex set is a point set in Rd, d ∈ N, and whose weight map assigns to each
edge the Euclidean distance between the two nodes connected by the edge.

1.4.5 Algebraic graph theory

Algebraic graph theory (Biggs, 1994; Godsil and Royle, 2001) is the study
of matrices defined by digraphs: in this section, we expose two topics. First,
we study the equivalence between properties of graphs and of their associ-
ated adjacency matrices. We also specify how to associate a digraph to a
nonnegative matrix. Second, we introduce and characterize the Laplacian
matrix of a weighted digraph.

We begin by studying adjacency matrices. Note that the adjacency matrix
of a weighted digraph is nonnegative and, in general, not stochastic. The
following lemma expands on this point.

Lemma 1.31 (Weight-balanced digraphs and doubly stochastic ad-
jacency matrices). Let G be a weighted digraph of order n with weighted
adjacency matrix A and weighted out-degree matrix Dout. Define the matrix

F =

{

D−1
outA, if each out-degree is strictly positive,

(In + Dout)
−1(In + A), otherwise.

Then

(i) F is row-stochastic; and

(ii) F is doubly stochastic if G is weight-balanced and the weighted degree
is constant for all vertices.

Proof. Consider first the case when each vertex has an outgoing edge so that
Dout is invertible. We first note that diag(v)−1v = 1n, for each v ∈ (R\{0})n.
Therefore

(

D−1
outA

)

1n = diag(A1n)−1
(

A1n

)

= 1n,

which proves (i). Furthermore, if Dout = Din = dIn for some d ∈ R>0, then

(

D−1
outA

)T
1n =

1

d

(

AT1n

)

= D−1
in

(

AT1n

)

= diag(AT1n)−1
(

AT1n

)

= 1n,

which proves (ii). Finally, if (V, E, A) does not have outgoing edges at each
vertex, then apply the statement to the weighted digraph (V, E ∪{(i, i) | i ∈
{1, . . . , n}}, A + In). �
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The next result characterizes the relationship between the adjacency ma-
trix and directed paths in the digraph.

Lemma 1.32 (Directed paths and powers of the adjacency matrix).
Let G be a weighted digraph of order n with weighted adjacency matrix A,
with unweighted adjacency matrix A0,1 ∈ {0, 1}n×n, and possibly with self-
loops. For all i, j, k ∈ {1, . . . , n}

(i) the (i, j) entry of Ak
0,1 equals the number of directed paths of length

k (including paths with self-loops) from node i to node j; and

(ii) the (i, j) entry of Ak is positive if and only if there exists a directed
path of length k (including paths with self-loops) from node i to
node j.

Proof. The second statement is a direct consequence of the first. The first
statement is proved by induction. The statement is clearly true for k = 1.
Next, we assume the statement is true for k ≥ 1 and we prove it for k + 1.
By assumption, the entry (Ak)ij equals the number of directed paths from
i to j of length k. Note that each path from i to j of length k + 1 identifies
(1) a unique node ℓ such that (i, ℓ) is an edge of G and (2) a unique path
from ℓ to j of length k. We write Ak+1 = AAk in components as

(Ak+1)ij =
n

∑

ℓ=1

Aiℓ(A
k)ℓj .

Therefore, it is true that the entry (Ak+1)ij equals the number of directed
paths from i to j of length k+1. This concludes the induction argument. �

The following proposition characterizes in detail the relationship between
various connectivity properties of the digraph and algebraic properties of
the adjacency matrix. The result is illustrated in Figure 1.13 and its proof
is postponed until Section 1.8.3.

Proposition 1.33 (Connectivity properties of the digraph and pos-
itive powers of the adjacency matrix). Let G be a weighted digraph
of order n with weighted adjacency matrix A. The following statements are
equivalent:

(i) G is strongly connected;

(ii) A is irreducible; and

(iii)
∑n−1

k=0 Ak is positive.

For any j ∈ {1, . . . , n}, the following two statements are equivalent:
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1

2

3

Figure 1.13 An illustration of Proposition 1.33. Even though vertices 2 and 3 are globally
reachable, the digraph is not strongly connected because vertex 1 has no
in-neighbor other than itself. Therefore, the associated adjacency matrix
A = (aij) with (a1j) = 13, (a2j) = (a3j) = (0, 1, 1), is reducible.

(iv) the jth node of G is globally reachable; and

(v) the jth column of
∑n−1

k=0 Ak has positive entries.

Stronger statements can be given for digraphs with self-loops.

Proposition 1.34 (Connectivity properties of the digraph and pos-
itive powers of the adjacency matrix: cont’d). Let G be a weighted
digraph of order n with weighted adjacency matrix A and with self-loops at
each node. The following statements are equivalent:

(iv) G is strongly connected; and

(v) An−1 is positive.

For any j ∈ {1, . . . , n}, the following two statements are equivalent:

(iv) the jth node of G is globally reachable; and

(v) the jth column of An−1 has positive entries.

Next, we characterize the relationship between irreducible aperiodic di-
graphs and primitive matrices (recall Definition 1.12). We will postpone the
proof to Section 1.8.3.

Proposition 1.35 (Strongly connected and aperiodic digraph and
primitive adjacency matrix). Let G be a weighted digraph of order n with
weighted adjacency matrix A. The following two statements are equivalent:

(i) G is strongly connected and aperiodic; and

(ii) A is primitive, that is, there exists k ∈ N such that Ak is positive.
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This concludes our study of adjacency matrices associated to weighted
digraphs. Next, we emphasize how all results obtained so far have analogs
that hold when the original object is a nonnegative matrix, instead of a
weighted digraph.

Remark 1.36 (From a nonnegative matrix to its associated di-
graphs). Given a nonnegative n × n matrix A, its associated weighted di-
graph is the weighted digraph with nodes {1, . . . , n}, and weighted adja-
cency matrix A. The unweighted version of this weighted digraph is called
the associated digraph. The following statements are analogs of the previous
lemmas:

(i) if A is stochastic, then its associated digraph has weighted out-
degree matrix equal to In;

(ii) if A is doubly stochastic, then its associated weighted digraph is
weight-balanced and, additionally, both in-degree and out-degree
matrices are equal to In; and

(iii) A is irreducible if and only if its associated weighted digraph is
strongly connected. •

So far, we have analyzed in detail the properties of adjacency matrices.
We conclude this section by studying a second relevant matrix associated
to a digraph, called the Laplacian matrix. The Laplacian matrix of the
weighted digraph G is

L(G) = Dout(G) − A(G).

Some immediate consequences of this definition are the following:

(i) L(G)1n = 0n, that is, 0 is an eigenvalue of L(G) with eigenvector
1n;

(ii) G is undirected if and only if L(G) is symmetric; and

(iii) L(G) equals the Laplacian matrix of the digraph obtained by adding
to or removing from G any self-loop with arbitrary weight.

Further properties are established as follows.

Theorem 1.37 (Properties of the Laplacian matrix). Let G be a
weighted digraph of order n. The following statements hold:

(i) all eigenvalues of L(G) have nonnegative real part (thus, if G is
undirected, then L(G) is symmetric positive semidefinite);

(ii) if G is strongly connected, then rank(L(G)) = n − 1, that is, 0 is a
simple eigenvalue of L(G);
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(iii) G contains a globally reachable vertex if and only if rank(L(G)) =
n − 1;

(iv) the following three statements are equivalent:

(a) G is weight-balanced;

(b) 1T
nL(G) = 0T

n ; and

(c) L(G) + L(G)T is positive semidefinite.

1.5 DISTRIBUTED ALGORITHMS ON SYNCHRONOUS

NETWORKS

Here, we introduce a synchronous network as a group of processors with
the ability to exchange messages and perform local computations. What we
present is a basic classic model studied extensively in the distributed algo-
rithms literature. Our treatment is directly adopted with minor variations,
from the texts by Lynch (1997) and Peleg (2000).

1.5.1 Physical components and computational models

Loosely speaking, a synchronous network is a group of processors, or nodes,
that possess a local state, exchange messages along the edges of a digraph,
and compute an update to their local state based on the received messages.
Each processor alternates the two tasks of exchanging messages with its
neighboring processors and of performing a computation step. Let us begin
by describing what constitutes a network.

Definition 1.38 (Network). The physical component of a synchronous
network S is a digraph (I, Ecmm), where:

(i) I = {1, . . . , n} is called the set of unique identifiers (UIDs); and

(ii) Ecmm is a set of directed edges over the vertices {1, . . . , n}, called
the communication links. •

In general, the set of unique identifiers does not need to be n consecutive
natural numbers, but we adopt this convention for simplicity. The set Ecmm

models the topology of the communication service among the nodes: for
i, j ∈ {1, . . . , n}, processor i can send a message to processor j if the directed
edge (i, j) is present in Ecmm. Note that, unlike the standard treatments
in Lynch (1997) and Peleg (2000), we do not assume the digraph to be
strongly connected; the required connectivity assumption will be specified
on a case-by-case basis.
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Next, we discuss the state and the algorithms that each processor possesses
and executes, respectively. By convention, we let the superscript [i] denote
any quantity associated with the node i.

Definition 1.39 (Distributed algorithm). A distributed algorithm DA
for a network S consists of the sets

(i) A, a set containing the null element, called the communication
alphabet—elements of A are called messages;

(ii) W [i], i ∈ I, called the processor state sets; and

(iii) W
[i]
0 ⊆ W [i], i ∈ I, sets of allowable initial values;

and of the maps

(i) msg[i] : W [i] × I → A, i ∈ I, called message-generation functions;
and

(ii) stf[i] : W [i] × An → W [i], i ∈ I, called state-transition functions.

If W [i] = W , msg[i] = msg, and stf[i] = stf for all i ∈ I, then DA is said to

be uniform and is described by a tuple (A, W, {W [i]
0 }i∈I , msg, stf). •

Now, with all elements in place, we can explain in more detail how a
synchronous network executes a distributed algorithm (see Figure 1.14).
The state of processor i is a variable w[i] ∈ W [i], initially set equal to an

Transmit

and

receive

Update

processor

state

Figure 1.14 The execution of a distributed algorithm by a synchronous network.

allowable value in W
[i]
0 . At each time instant ℓ ∈ Z≥0, processor i sends

to each of its out-neighbors j in the communication digraph (I, Ecmm) a
message (possibly the null message) computed by applying the message-
generation function msg[i] to the current values of its state w[i] and to the
identity j. Subsequently, but still at time instant ℓ ∈ Z≥0, processor i
updates the value of its state w[i] by applying the state-transition function
stf[i] to the current value of w[i] and to the messages it receives from its
in-neighbors. At each round, the first step is transmission and the second
one is computation. These notions are formalized in the following definition.
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Definition 1.40 (Network evolution). Let DA be a distributed algo-
rithm for the network S. The evolution of (S,DA) from initial conditions

w
[i]
0 ∈ W

[i]
0 , i ∈ I, is the collection of trajectories w[i] : Z≥0 → W [i], i ∈ I,

satisfying

w[i](ℓ) = stf[i](w[i](ℓ − 1), y[i](ℓ)),

where w[i](−1) = w
[i]
0 , i ∈ I, and where the trajectory y[i] : Z≥0 → An

(describing the messages received by processor i) has components y
[i]
j (ℓ), for

j ∈ I, given by

y
[i]
j (ℓ) =

{

msg[j](w[j](ℓ − 1), i), if (j, i) ∈ Ecmm,

null, otherwise.

Let ℓ 7→ w(ℓ) = (w[1](ℓ), . . . , w[n](ℓ)) denote the collection of trajectories. •

We conclude this section with two sets of remarks. We first discuss some
aspects of our communication model that have a large impact on the subse-
quent development. We then collect a few general comments about control
structures and failure modes relevant in the study of distributed algorithms
on networks.

Remarks 1.41 (Aspects of the communication model).

(i) The network S and the algorithm DA are referred to as synchronous
because the communications between all processors takes place at
the same time for all processors.

(ii) Communication is modeled as a so-called “point-to-point” service: a
processor can specify different messages for different out-neighbors
and knows the processor identity corresponding to any incoming
message.

(iii) Information is exchanged between processors as messages, that is,
elements of the alphabet A; the message null indicates no commu-
nication. Messages might encode logical expressions such as true

and false, or finite-resolution quantized representations of integer
and real numbers.

(iv) In some uniform algorithms, the messages between processors are
the processors’ states. In such cases, the corresponding commu-
nication alphabet is A = W ∪{null} and the message-generation
function msgstd(w, j) = w is referred to as the standard message-
generation function. •
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Remarks 1.42 (Advanced topics: Control structures and failures).

(i) Processors in a network have only partial information about the
network topology. In general, each processor only knows its own
UID, and the UID of its in- and out-neighbors. Sometimes we will
assume that the processor knows the network diameter. In some
cases (Peleg, 2000), actively running networks might depend upon
“control structures,” that is, structures that are computed at ini-
tial time and are exploited in subsequent algorithms. For example,
routing tables might be computed for routing problems, “leader”
processors might be elected, and tree structures might be computed
and represented in a distributed manner for various tasks; for ex-
ample, coloring or maximal independent set problems. We present
some sample algorithms to compute these structures below.

(ii) A key issue in the study of distributed algorithms is the possible
occurrence of failures. A network might experience intermittent
or permanent communication failures: along given edges, a null

message or an arbitrary message might be delivered instead of the
intended value. Alternatively, a network might experience various
types of processor failures: a processor might transmit only null

messages (i.e., the msg function always returns null), a processor
might quit updating its state (i.e., the stf function neglects incoming
messages and returns the current state value), or a processor might
implement arbitrarily modified msg and stf functions. The latter
situation, in which completely arbitrary and possibly malicious be-
havior is adopted by faulty nodes, is referred to as a Byzantine
failure in the distributed algorithms literature. •

1.5.2 Complexity notions

Here, we begin our analysis of the performance of distributed algorithms.
We introduce a notion of algorithm completion and, in turn, we introduce
the classic notions of time, space, and communication complexity.

Definition 1.43 (Algorithm completion). We say that an algorithm
terminates when only null messages are transmitted and all processors’
states become constants. •

Remarks 1.44 (Alternative termination notions).

(i) In the interest of simplicity, we have defined evolutions to be un-
bounded in time and we do not explicitly require algorithms to
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actually have termination conditions, that is, to be able to detect
when termination takes place.

(ii) It is also possible to define the termination time as the first instant
when a given problem or task is achieved, independently of the fact
that the algorithm might continue to transmit data subsequently.•

Definition 1.45 (Time complexity). The (worst-case) time complexity
of a distributed algorithm DA on a network S, denoted TC(DA), is the
maximum number of rounds required by the execution of DA on S among
all allowable initial states until termination. •

Next, it is of interest to quantify the memory and communication re-
quirements of distributed algorithms. From an information theory view-
point (Gallager, 1968), the information content of a memory variable or of
a message is properly measured in bits. On the other hand, it is convenient
to use the alternative notions of “basic memory unit” and “basic message.”
It is customary (Peleg, 2000) to assume that a “basic memory unit” or a
“basic message” contains log(n) bits; so that, for example, the information
content of a robot identifier i ∈ {1, . . . , n} is log(n) bits or, equivalently,
one “basic memory unit.” Note that elements of the processor state set W
or of the alphabet set A might amount to multiple basic memory units or
basic messages; the null message has zero cost. Unless specified otherwise,
the following definitions and examples are stated in terms of basic memory
units and basic messages.

Definition 1.46 (Space complexity). The (worst-case) space complexity
of a distributed algorithm DA on a network S, denoted by SC(DA), is the
maximum number of basic memory units required by a processor executing
DA on S among all processors and among all allowable initial states until
termination. •

Remark 1.47 (Space complexity conventions). By convention, each
processor knows its identity, that is, it requires log(n) bits to represent its
unique identifier in a set with n distinct elements. We do not count this cost
in the space complexity of an algorithm. •

Next, we introduce a notion of communication complexity.

Definition 1.48 (Communication complexity). The (worst-case) com-
munication complexity of a distributed algorithm DA on a network S, de-
noted by CC(DA), is the maximum number of basic messages transmitted
over the entire network during the execution of DA among all allowable
initial states until termination. •
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We conclude this section by discussing ways of quantifying time, space
and communication complexity. The idea, borrowed from combinatorial op-
timization, is to adopt asymptotic “order of magnitude” measures. Formally,
complexity bounds will be expressed with respect to the Bachmann–Landau
symbols O, Ω and Θ defined in Section 1.1. Let us be more specific:

(i) we will say that an algorithm has time complexity of order Ω(f(n))
over some network if, for all n, there exists a network of order n
and initial processor values such that the time complexity of the
algorithm is greater than a constant factor times f(n);

(ii) we will say that an algorithm has time complexity of order O(f(n))
over arbitrary networks if, for all n, for all networks of order n and
for all initial processor values, the time complexity of the algorithm
is lower than a constant factor times f(n); and

(iii) we will say that an algorithm has time complexity of order Θ(f(n))
if its time complexity is of order Ω(f(n)) over some network and
O(f(n)) over arbitrary networks at the same time.

Similar conventions will be used for space and communication complexity.

In many cases, the complexity of an algorithm will typically depend upon
the number of vertices of the network. It is therefore useful to present a
few simple facts about these functions now. Over arbitrary digraphs S =
(I, Ecmm) of order n, we have

diam(S) ∈ Θ(n), |Ecmm(S)| ∈ Θ(n2) and radius(v,S) ∈ Θ(diam(S)),

where v is any vertex of S.

Remark 1.49 (Additional complexity notions). Numerous variations
of the proposed complexity notions are possible and may be of interest.

Global lower bounds. In the definition of lower bound, consider the logic
quantifier describing the role of the network. The lower bound state-
ment is “existential” rather than “global,” in the sense that the bound
does not hold for all graphs. As discussed in Peleg (2000), it is pos-
sible to define also “global” lower bounds, that is, lower bounds over
all graphs, or lower bounds over specified classes of graphs.

Average complexity notions. The proposed complexity notions focus on
the worst-case situation. It is possible to define expected or average
complexity notions, where one is interested in characterizing, for ex-
ample, the average number of rounds required or the average number
of basic messages transmitted over the entire network during the al-
gorithm execution among all allowable initial states until termination.
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Problem complexity. It is possible to define complexity notions for prob-
lems, rather than algorithms, by considering, for example, the worst-
case optimal performance among all algorithms that solve the given
problem, or over classes of algorithms or classes of graphs. •

1.5.3 Broadcast and BFS tree computation

In the following, we consider some basic algorithmic problems such as the
simple one-to-all communication task—that is, broadcasting—and the es-
tablishment of some “control structures” (see Remarks 1.42), such as the
construction of a BFS spanning tree and the election of a leader.

Problem 1.50 (Broadcast). Assume that a processor, called the source,
has a message, called the token. Transmit the token to all others processors
in the network. •

Note that existence of a spanning tree rooted at the source is a neces-
sary requirement for the broadcast problem to be solvable. We begin by
establishing some analysis results for the broadcast problem.

Lemma 1.51 (Complexity lower bounds for the broadcast prob-
lem). Let S be a network containing a spanning tree rooted at v. The
broadcast problem for S from the source v has communication complexity
lower bounded by n − 1 and time complexity lower bounded by radius(v,S).

In what follows, we shall solve the broadcast problem while simultaneously
also considering the following problem.

Problem 1.52 (BFS tree computation). Let S be a network containing
a spanning tree rooted at v. Compute a distributed representation for a
BFS tree rooted at v. •

We add two remarks on the BFS tree computation problem:

(i) By a distributed representation of a directed tree with bounded
memory at each node, we mean the following: each child vertex
knows the identity of its parent and the root vertex knows that it
has no parents. A more informative structure would require each
parent to know the identity of its children; this is easy to achieve
on undirected digraphs.

(ii) The BFS tree computation has the same lower bounds as the broad-
cast problem.
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An elegant and classic solution to the broadcast and BFS tree compu-
tation problems is given by the flooding algorithm. This algorithm
implements the same “breadth-first search” mechanism of the (centralized)
BFS algorithm characterized in Lemma 1.28:

[Informal description] The source broadcasts the token to its
out-neighbors. In each communication round, each node deter-
mines whether it has received a non-null message from one of
its in-neighbors. When a non-null message is received—that is,
the token is received—the node performs two actions. First, the
node stores the token in the variable data (this solves the Broad-
cast problem). Second, the node stores the identity of one of
the transmitting in-neighbors in the variable parent (this solves
the BFS tree computation problem). Specifically, if the message
is received simultaneously from multiple in-neighbors, then the
node stores the smallest among the identities of the transmitting
in-neighbors. In the subsequent communication round, the node
broadcasts the token to its out-neighbors.

To formally describe the algorithm, we assume that the node with the
message to be broadcast is v = 1. Also, we assume that the token is a letter
of the Greek alphabet {α, . . . , ω}:

Synchronous Network: S = ({1, . . . , n}, Ecmm)

Distributed Algorithm: flooding

Alphabet: A = {α, . . . , ω}∪ null

Processor State: w = (parent, data, snd-flag), where

parent ∈ {0, . . . , n}, initially: parent[1] = 1,

parent[j] = 0 for all j 6= 1

data ∈ A, initially: data[1] = µ,

data[j] = null for all j 6= 1

snd-flag ∈ {false, true}, initially: snd-flag[1] = true,

snd-flag[j] = false for j 6= 1

function msg(w, i)

1: if (parent 66= i) AND (snd-flag = true) then
2: return data

3: else
4: return null

function stf(w, y)
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1: case
2: (data = null) AND (y contains only null messages):

% The node has not yet received the token
3: new-parent := null

4: new-data := null

5: new-snd-flag := false

6: (data = null) AND (y contains a non-null message):
% The node has just received the token

7: new-parent := smallest UID among transmitting in-neighbors
8: new-data := a non-null message
9: new-snd-flag := true

10: (data 6= null):
% If the node already has the token, then do not re-broadcast it

11: new-parent := parent

12: new-data := data

13: new-snd-flag := false

14: return (new-parent, new-data, new-snd-flag)

An execution of the flooding algorithm is shown in Figure 1.15.
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Figure 1.15 An example execution of the flooding algorithm. The source is vertex
1: (a) shows the network and (b) shows the BFS tree that results from the
execution.

This algorithm can analyzed by induction: one can show that, for d ∈
{1, . . . , radius(v,S)}, every node at a distance d from the root receives a
non-null message at round d. A summary of the results is given as follows.

Lemma 1.53 (Complexity upper bounds for the flooding algo-
rithm). For a network S containing a spanning tree rooted at v, the flood-

ing algorithm has communication complexity in Θ(|Ecmm|), time com-
plexity in Θ(radius(v,S)), and space complexity in Θ(1).

We conclude the section with a final remark.
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Remark 1.54 (Termination condition for the flooding algorithm).
As presented, the flooding algorithm does not include a termination
condition, that is, the processors do not have a mechanism to detect when
the broadcast and tree computation are complete. If an upper bound on the
graph diameter is known, then it is easy to design a termination condition
based on this information; we do this in the next subsection. If no a priori
knowledge is available, then one can design more sophisticated algorithms
for networks with stronger connectivity properties. We refer to Lynch (1997)
and Peleg (2000) for a complete discussion about this. •

1.5.4 Leader election

Next, we formulate another interesting problem for a network.

Problem 1.55 (Leader election). Assume that all processors of a net-
work have a state variable, say leader, initially set to unknwn. We say that
a leader is elected when one and only one processor has the state variable
set to true and all others have it set to false. Elect a leader. •

This task that is a bit more global in nature. We display here a solution
that requires individual processors to know the diameter of the network,
denoted by diam(S), or an upper bound on it:

[Informal description] In each communication round, each agent
sends to its out-neighbors the maximum UID it has received up
to that time. This is repeated for diam(S) rounds. At the last
round, each agent compares the maximum received UID with its
own, and declares itself a leader if they coincide, or a non-leader
otherwise.

The algorithm is called the floodmax algorithm: the maximum UID in
the network is transmitted to other agents in an incremental fashion. At
the first communication round, agents that are neighbors of the agent with
the maximum UID receive the message from it. At the next communication
round, the neighbors of these agents receive the message with the maximum
UID. This process goes on for diam(S) rounds, to ensure that every agent
receives the maximum UID. Note that there are networks for which all agents
receive the message with the maximum UID in fewer communication rounds
than diam(S). The algorithm is formally stated as follows:

Synchronous Network: S = ({1, . . . , n}, Ecmm)

Distributed Algorithm: floodmax
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Alphabet: A = {1, . . . , n}∪{null}
Processor State: w = (my-id, max-id, leader, round), where

my-id ∈ {1, . . . , n}, initially: my-id[i] = i for all i

max-id ∈ {1, . . . , n}, initially: max-id[i] = i for all i

leader ∈ {false, true, unknwn}, initially: leader[i] = unknwn for all i

round ∈ {0, 1, . . . ,diam(S)}, initially: round[i] = 0 for all i

function msg(w, i)

1: if round < diam(S) then
2: return max-id

3: else
4: return null

function stf(w, y)

1: new-id:= max{max-id, largest identifier in y}
2: case
3: round < diam(S): new-lead := unknwn

4: round = diam(S) AND max-id = my-id: new-lead := true

5: round = diam(S) AND max-id > my-id: new-lead := false

6: return (my-id, new-id, new-lead, round +1)

Figure 1.16 shows an execution of the floodmax algorithm. Some
properties of this algorithm are characterized in the following lemma. A
complete analysis of this algorithm, including modifications to improve the
communication complexity, is discussed in Lynch (1997, Section 4.1).

Figure 1.16 Execution of the floodmax algorithm. The diameter of the network is 4.
In the leftmost frame, the agent with the maximum UID is colored in red.
After four communication rounds, its message has been received by all agents.

Lemma 1.56 (Complexity upper bounds for the floodmax algo-
rithm). For a network S containing a spanning tree, the floodmax al-

gorithm has communication complexity in O(diam(S)|Ecmm|), time com-
plexity equal to diam(S), and space complexity in Θ(1).

A simplification of the floodmax algorithm leads to the Le Lann–
Chang–Roberts algorithm (or LCR algorithm in short) for leader elec-
tion in rings, see (Lynch, 1997, Chapter 3.3), which we describe next. The
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LCR algorithm runs on a ring digraph and does not require the agents
to know the diameter of the network. We provide an informal and a formal
description of the algorithm.

[Informal description] In each communication round, each agent
sends to its neighbors the maximum UID it has received up to
that time. (Agents do not record the number of communication
rounds.) When the agent with the maximum UID receives its
own UID from an in-neighbor, it declares itself the leader.

Synchronous Network: ring digraph

Distributed Algorithm: LCR

Alphabet: A = {1, . . . , n}∪{null}
Processor State: w = (my-id, max-id, leader, snd-flag), where

my-id ∈ {1, . . . , n}, initially: my-id[i] = i for all i

max-id ∈ {1, . . . , n}, initially: max-id[i] = i for all i

leader ∈ {true, false, unknwn}, initially: leader[i] = unknwn for all i

snd-flag ∈ {true, false}, initially: snd-flag[i] = true for all i

function msg(w, i)

1: if snd-flag = true then
2: return max-id

3: else
4: return null

function stf(w, y)

1: case
2: (y contains only null msgs) OR (largest identifier in y < my-id):
3: new-id := max-id

4: new-lead := leader

5: new-snd-flag := false

6: (largest identifier in y = my-id):
7: new-id := max-id

8: new-lead := true

9: new-snd-flag := false

10: (largest identifier in y > my-id):
11: new-id := largest identifier in y
12: new-lead := false

13: new-snd-flag := true

14: return (my-id, new-id, new-lead, new-snd-flag)
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Figure 1.17 shows an execution of the LCR algorithm. The properties
of the LCR algorithm can be characterized as follows.

Figure 1.17 Execution of the LCR algorithm. In the leftmost frame, the agent with the
maximum UID is colored in red. After five communication rounds, this agent
receives its own UID from its in-neighbor and declares itself the leader.

Lemma 1.57 (Complexity upper bounds for the LCR algorithm).
For a ring network S of order n, the LCR algorithm has communication
complexity in Θ(n2), time complexity equal to n, and space complexity in
Θ(1).

1.5.5 Shortest-paths tree computation

Finally, we consider the shortest-paths tree problem in a weighted digraph:
in Section 1.4.4 we presented the Dijkstra algorithm to solve this prob-
lem in a centralized setting; we present here the Bellman-Ford algo-

rithm for the distributed setting. We consider a synchronous network as-
sociated to a weighted digraph, that is, we assume that a strictly positive
weight is associated to each communication edge. We aim to compute a tree
containing shortest paths from a source, say node 1, to all other nodes. As
for the computation of a BFS tree, we aim to obtain a distributed represen-
tation of a directed tree with bounded memory at each node:

[Informal description] Each agent maintains in its memory an es-
timate dist of its weighted distance from the source, and an esti-
mate parent of the in-neighbor corresponding to the (weighted)
shortest path from the source. The dist estimate is initialized
to 0 for the source and to +∞ for all other nodes. In each com-
munication round, each agent performs the following tasks: (1)
it transmits its dist value estimate to its out-neighbors, (2) it
computes the smallest quantity among “the dist value received
from an in-neighbor summed with the edge weight correspond-
ing to that in-neighbor,” and (3) if the agent’s estimate dist is
larger than this quantity, then the agent updates its dist and
its estimate parent.
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The algorithm is formally stated as follows:

Synchronous Network with Weights: S = ({1, . . . , n}, Ecmm, A)

Distributed Algorithm: Distributed Bellman-Ford

Alphabet: A = R>0 ∪ null∪{+∞}
Processor State: w = (parent, dist), where

parent ∈ {1, . . . , n}, initially: parent[j] = j for all j

dist ∈ A, initially: data[1] = 0,

data[j] = +∞ for all j 6= 1

function msg(w, i)

1: if round < n then
2: return dist

3: else
4: return null

function stf(w, y)

1: i := processor UID
2: k := arginf{yj + aji | for all yj 6= null}
3: if (dist < k) then
4: return (parent, dist)
5: else
6: return (k, yk + aki)

In other words, if we let di ∈ R≥0 ∪{+∞} denote the dist variable for
each processor i, then the Bellman-Ford algorithm is equivalent to the
following discrete-time dynamical system:

di(ℓ + 1) = inf
{

di(ℓ) , inf{dj(ℓ) + aji | (j, i) ∈ Ecmm}
}

,

with initial conditions d(0) = (1, +∞, . . . ,+∞). (Recall that Ecmm is the
edge set and that the weights aij are strictly positive for all (i, j) ∈ Ecmm.)

The following formal statements may be made about the evolution of this
algorithm. If there exists a directed spanning tree rooted at vertex 1, then all
variables di will take a final value in time equal to their topological distance
from vertex 1. After k communication rounds, the estimated distance at
node i equals the shortest path of topological length at most k from the
source to node i. Therefore, after n − 1 communication rounds, all possible
distinct topological paths connecting source to node i have been investigated.

The complexity properties of the distributed Bellman-Ford algo-

rithm are described as follows.
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Lemma 1.58 (Complexity upper bounds for the distributed Bell-
man-Ford algorithm). For a network S of order n containing a spanning
tree rooted at v, the distributed Bellman-Ford algorithm has com-
munication complexity in Θ(n|Ecmm|), time complexity equal to n − 1, and
space complexity in Θ(1).

Figure 1.18 shows an execution of the distributed Bellman-Ford al-

gorithm in a weighted digraph with four nodes and six edges.
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Figure 1.18 Execution of the distributed Bellman-Ford algorithm. (a) The proces-
sor state initialization. The vertex 1 is the only one whose variable dist is 0.
After three iterations, as guaranteed by Lemma 1.58, (d) depicts the resulting
shortest-paths tree of the digraph rooted at vertex 1. This tree is represented
in the last frame, with edges colored in gray.
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1.6 LINEAR DISTRIBUTED ALGORITHMS

Computing a linear combination of the initial states of the processors is one
of the most basic computation that we might be interested in implementing
on a synchronous network. More accurately, linear distributed algorithms
on synchronous networks are discrete-time linear dynamical systems whose
evolution map is linear and has a sparsity structure related to the network.
These algorithms represent an important class of iterative algorithms that
find applications in optimization, in the solution of systems of equations,
and in distributed decision making; see, for instance Bertsekas and Tsitsiklis
(1997). In this section, we present some relevant results on distributed linear
algorithms.

1.6.1 Linear iterations on synchronous networks

Given a synchronous network S = ({1, . . . , n}, Ecmm), assign a scalar fji 6= 0
to each directed edge (i, j) ∈ Ecmm. Given such scalars fji for (i, j) ∈ Ecmm,
the Linear combination algorithm over S is defined as follows:

Distributed Algorithm: Linear combination

Alphabet: A = R∪ null

Processor state: w ∈ R

function msg(w, i) = msgstd(w, i)

function stf(w, y)

1: i := processor UID
2: return fiiw +

∑

j∈N in(i) fijyj

We assume that each processor i ∈ {1, . . . , n} knows the scalars fij , for
j ∈ N in(i) ∪ {i}, so that it can evaluate the state-transition function. Also,
we assume that real numbers may be transmitted through a communication
channel, that is, we neglect quantization issues in the message-generation
function.

In the language of Section 1.3, one can regard the Linear combination

algorithm over S as the discrete-time continuous-space dynamical system
(X, X0, f), with X = X0 = Rn and an evolution map defined by f(w) =
F · w, where we define a matrix F ∈ Rn×n with vanishing entries except
for fji, for (i, j) ∈ Ecmm. Note that, if A(S) denotes the adjacency matrix
of the digraph S, then the entries of F vanish precisely when the entries of
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A(S)T vanish. With this notation, the evolution w : Z≥0 → Rn with initial
condition w0 ∈ Rn is given by

w(0) = w0, w(ℓ + 1) = F · w(ℓ), ℓ ∈ Z≥0. (1.6.1)

Conversely, any linear algorithm of the form (1.6.1) can easily be cast as
a Linear combination algorithm over a suitable synchronous network.
We do this bookkeeping carefully, in order to be consistent with the notion
of associated weighted digraph from Remark 1.36. Given F ∈ Rn×n, let
SF be the synchronous network with node set {1, . . . , n} and with edge set
Ecmm(F ), defined by any of the equivalent statements:

(i) (i, j) ∈ Ecmm(F ) if and only if fji 6= 0; or

(ii) SF is the reversed and unweighted version of the digraph associated
to F .

1.6.2 Averaging algorithms

Here, we study linear combination algorithms over time-dependent weighted
directed graphs; we restrict our analysis to nonnegative weights.

Definition 1.59 (Averaging algorithms). The averaging algorithm as-
sociated to a sequence of stochastic matrices {F (ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n is
the discrete-time dynamical system

w(ℓ + 1) = F (ℓ) · w(ℓ), ℓ ∈ Z≥0. (1.6.2)

•

In the literature, such algorithms are often referred to as agreement algo-
rithms, or as consensus algorithms.

There are useful ways to compute a stochastic matrix, and therefore, a
time-independent averaging algorithm, from a weighted digraph; see Exer-
cise E1.15.

Definition 1.60 (Adjacency- and Laplacian-based averaging). Let G
be a weighted digraph with node set {1, . . . , n}, weighted adjacency matrix
A, weighted out-degree matrix Dout, and weighted Laplacian L. Then

(i) the adjacency-based averaging algorithm is defined by the stochastic
matrix (In + Dout)

−1(In + A) and reads in components

wi(ℓ + 1) =
1

1 + dout(i)

(

wi(ℓ) +
n

∑

j=1

aijwj(ℓ)
)

; (1.6.3)
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(ii) given a positive scalar ε upper bounded by min{1/dout(i) | i ∈
{1, . . . , n}}, the Laplacian-based averaging algorithm is defined by
the stochastic matrix In − εL(G) and reads in components

wi(ℓ + 1) =
(

1 − ε
n

∑

j=1,j 6=i

aij

)

wi(ℓ) + ε
n

∑

j=1,j 6=i

aijwj(ℓ). (1.6.4)

These notions are immediately extended to sequences of stochastic matrices
arising from sequences of weighted digraphs. •

Adjacency-based averaging algorithms arising from unweighted undirected
graphs without self-loops are also known as equal-neighbor averaging rule
or the Vicsek’s model (see Vicsek et al., 1995). Specifically, if G is an
unweighted graph with vertices {1, . . . , n} and without self-loops, then the
equal-neighbor averaging rule is

wi(ℓ + 1) = avrg
(

{wi(ℓ)}∪{wj(ℓ) | j ∈ NG(i)}
)

, (1.6.5)

where we adopt the shorthand avrg({x1, . . . , xk}) = (x1 + · · · + xk)/k.

Remark 1.61 (Sensing versus communication interpretation of di-
rected edges). In the definition of averaging algorithms arising from di-
graphs, the digraph edges play the role of “sensing edges,” not that of “com-
munication edges.” In other words, a nonzero entry aij , corresponding to
the digraph edge (i, j), implies that the ith component of the state is up-
dated with the jth component of the state. It is as if node i could sense the
state of node j, rather than node i transmitting to node j its own state. •

Next, we present the main stability and convergence results for averag-
ing algorithms associated to a sequence of stochastic matrices. We start
by discussing equilibrium points and their stability. Recall that 1n is an
eigenvector of any stochastic matrix with eigenvalue 1 and that the diagonal
set diag(Rn) is the vector subspace generated by 1n. Therefore, any point
in diag(Rn) is an equilibrium for any averaging algorithm. We refer to the
points of the diag(Rn) as agreement configurations, since all the components
of an element in diag(Rn) are equal to the same value. We will informally say
that an algorithm achieves agreement if it steers the network state toward
the set of agreement configurations.

Lemma 1.62 (Stability of agreement configurations). Any averaging
algorithm in Rn is uniformly stable and uniformly bounded with respect to
diag(Rn).
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Regarding convergence results, we need to introduce a useful property of
collections of stochastic matrices. Given α ∈ ]0, 1], the set of non-degenerate
matrices with respect to α consists of all stochastic matrices F with entries
fij , for i, j ∈ {1, . . . , n}, satisfying

fii ∈ [α, 1], and fij ∈ {0}∪[α, 1] for j 6= i.

Additionally, the sequence of stochastic matrices {F (ℓ) | ℓ ∈ Z≥0} is non-
degenerate if there exists α ∈ ]0, 1] such that F (ℓ) is non-degenerate with
respect to α for all ℓ ∈ Z≥0. We now state the main convergence result and
postpone its proof to Section 1.8.5.

Theorem 1.63 (Convergence for time-dependent stochastic matri-
ces). Let {F (ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n be a non-degenerate sequence of stochas-
tic matrices. For ℓ ∈ Z≥0, let G(ℓ) be the unweighted digraph associated to
F (ℓ), according to Remark 1.36. The following statements are equivalent:

(i) the set diag(Rn) is uniformly globally attractive for the averaging
algorithm associated to {F (ℓ) | ℓ ∈ Z≥0}; and

(ii) there exists a duration δ ∈ N such that, for all ℓ ∈ Z≥0, the digraph

G(ℓ + 1)∪ · · · ∪G(ℓ + δ)

contains a globally reachable vertex.

We collect a few observations about this result.

Remarks 1.64 (Discussion of Theorem 1.63).

(i) The statement in Theorem 1.63(i) means that each solution to the
time-dependent linear dynamical system (1.6.2) converges uniformly
and asymptotically to the vector subspace generated by 1n.

(ii) The necessary and sufficient condition in Theorem 1.63(ii) amounts
to the existence of a uniformly bounded time duration δ with the
property that a weak connectivity assumption holds over each col-
lection of δ consecutive digraphs. We refer to Blondel et al. (2005)
for a counterexample showing that if the duration in Theorem 1.63
is not uniformly bounded, then there exist algorithms that do not
converge.

(iii) According to Definition 1.23, uniform convergence is a property of
all solutions to system (1.6.2) starting at any arbitrary time, and not
only at time equal to zero. If we restrict our attention to solutions
that only start at time zero, then Theorem 1.63 should be modified
as follows: the statement in Theorem 1.63(i) implies, but is not
implied by, the statement in Theorem 1.63(ii).
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(iv) The theorem applies only to sequences of non-degenerate matri-
ces. Indeed, there exist sequences of degenerate stochastic matrices
whose associated averaging algorithms converge. Furthermore, one
does not even need to consider sequences, because it is possible to
define converging algorithms by just considering a single stochastic
matrix. Precisely when the stochastic matrix is primitive, we al-
ready know that the associated averaging algorithm will converge
(see Theorem 1.13). Examples of degenerate primitive stochas-
tic matrices (with converging associated averaging algorithms) are
given in Exercise E1.23. We discuss time-invariant averaging algo-
rithms in Proposition 1.68 below. •

Theorem 1.63 gives a general result about non-degenerate stochastic ma-
trices that are not necessarily symmetric. The following theorem presents
a convergence result for the case of symmetric matrices (i.e., undirected
digraphs) under connectivity requirements that are weaker (i.e., the du-
ration does not need to be uniformly bounded) than those expressed in
statement (ii) of Theorem 1.63.

Theorem 1.65 (Convergence for time-dependent stochastic sym-
metric matrices). Let {F (ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n be a non-degenerate
sequence of symmetric, stochastic matrices. For ℓ ∈ Z≥0, let G(ℓ) be the un-
weighted graph associated to F (ℓ), according to Remark 1.36. The following
statements are equivalent:

(i) the set diag(Rn) is globally attractive for the averaging algorithm
associated to {F (ℓ) | ℓ ∈ Z≥0}; and

(ii) for all ℓ ∈ Z≥0, the graph
⋃

τ≥ℓ

G(τ)

is connected.

Let us particularize our discussion here on adjacency- and Laplacian-based
averaging algorithms.

Corollary 1.66 (Convergence of adjacency- and Laplacian-based
averaging algorithms). Let {G(ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n be a sequence of
weighted digraphs. The following statements are equivalent:

(i) there exists δ ∈ N such that, for all ℓ ∈ Z≥0, the digraph

G(ℓ + 1)∪ · · · ∪G(ℓ + δ)

contains a globally reachable vertex;

(ii) the set diag(Rn) is uniformly globally attractive for the adjacency-
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based averaging algorithm (1.6.3) associated to {G(ℓ) | ℓ ∈ Z≥0};
and

(iii) the set diag(Rn) is uniformly globally attractive for the Laplacian-
based averaging algorithm (1.6.4) (defined with ε < 1/n) associated
to {G(ℓ) | ℓ ∈ Z≥0}.

Finally, we refine the results presented thus far by discussing some further
aspects.

Proposition 1.67 (Convergence to a point in the invariant set).
Under the assumptions in Theorem 1.63 and assuming that diag(Rn) is uni-
formly globally attractive for the averaging algorithm, each individual evolu-
tion converges to a specific point of diag(Rn).

In general, the final value upon which all wi, i ∈ {1, . . . , n}, agree in the
limit is unknown. This final value depends on the initial condition and the
specific sequence of matrices defining the time-dependent linear algorithm.
In some cases, however, one can compute the final value by restricting the
class of allowable matrices. We consider two settings: time-independent
averaging algorithms and doubly stochastic averaging algorithms.

First, we specialize the main convergence result to the case of time-
independent averaging algorithms. Note that, given a stochastic matrix
F , convergence of the averaging algorithm associated to F for all initial
conditions is equivalent to the matrix F being semi-convergent (see Defini-
tion 1.6).

Proposition 1.68 (Time-independent averaging algorithm). Con-
sider the linear dynamical system on Rn

w(ℓ + 1) = Fw(ℓ), ℓ ∈ Z≥0. (1.6.6)

Assume that F ∈ Rn×n is stochastic, let G(F ) denote its associated weighted
digraph, and let v ∈ Rn be a left eigenvector of F with eigenvalue 1. Assume
either one of the two following properties:

(i) F is primitive (i.e., G(F ) is strongly connected and aperiodic); or

(ii) F has non-zero diagonal terms and a column of Fn−1 has positive
entries (i.e., G(F ) has self-loops at each node and has a globally
reachable node).

Then every trajectory w of system (1.6.6) converges to (vT w(0)/vT1n)1n.

Proof. From Theorem 1.63 we know that the dynamical system (1.6.6) con-
verges if property (ii) holds. The same conclusion follows if F satisfies prop-
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erty (i) because of the Perron–Frobenius Theorem 1.13 and Lemma 1.7. To
computing the limiting value, note that

vT w(ℓ + 1) = vT Fw(ℓ) = vT w(ℓ),

that is, the quantity ℓ 7→ vT w(ℓ) is constant. Because F is semi-convergent
and stochastic, we know that limℓ→+∞ w(ℓ) = α1n for some α. To conclude,
we compute α from the relationship α(vT1n) = limℓ→+∞ vT w(ℓ) = vT w(0).

�

Remarks 1.69 (Alternative conditions for time-independent aver-
aging).

(i) The following necessary and sufficient condition generalizes and is
weaker than the two sufficient conditions given in Proposition 1.68:
every trajectory of system (1.6.6) is asymptotically convergent if and
only if all sinks of the condensation digraph of G(F ) are aperiodic
subgraphs of G(F ). We refer the interested reader to Meyer (2001,
Chapter 8) for the proof of this statement and for the related notion
of ergodic classes of a Markov chain. Also, we refer the interested
reader to Exercise E1.13 for the notion of condensation digraph.

(ii) Without introducing any trajectory w, the result of the proposition
can be equivalently stated by saying that

lim
ℓ→+∞

F ℓ = (vT1n)−11nvT . •

Second, we focus on the case of doubly stochastic averaging algorithms.

Corollary 1.70 (Average consensus). Let {F (ℓ) | ℓ ∈ Z≥0} be a se-
quence of stochastic matrices as in Theorem 1.63. If all matrices F (ℓ),
ℓ ∈ Z≥0, are doubly stochastic, then every trajectory w of the averaging
algorithms satisfies

n
∑

i=1

wi(ℓ) =
n

∑

i=1

wi(0), for all ℓ,

that is, the sum of the initial conditions is a conserved quantity. There-
fore, if {F (ℓ) | ℓ ∈ Z≥0} is non-degenerate and satisfies property (ii) in
Theorem 1.63, then

lim
ℓ→+∞

wj(ℓ) =
1

n

n
∑

i=1

wi(0), j ∈ {1, . . . , n}.
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Proof. The proof of the first fact is an immediate consequence of

n
∑

i=1

wi(ℓ + 1) = 1T
nw(ℓ + 1) = 1T

nF (ℓ)w(ℓ) = 1T
nw(ℓ) =

n
∑

i=1

wi(ℓ).

The second fact is an immediate consequence of the first fact. �

In other words, if the matrices are doubly stochastic, then each compo-
nent of the trajectories will converge to the average of the initial condition.
We therefore adopt the following definition: an average-consensus averaging
algorithm is an averaging algorithm whose sequence of stochastic matrices
are all doubly stochastic.

1.6.3 The convergence speed of averaging algorithms

We know that any trajectory of the associated averaging algorithm converges
to the diagonal set diag(Rn); in what follows we characterize how fast this
convergence takes place. We begin with some general definitions for semi-
convergent matrices (recall the discussion culminating in Lemma 1.7).

Definition 1.71 (Convergence time and exponential convergence
factor). Let A ∈ Rn×n be semi-convergent with limit limℓ→+∞ Aℓ = A∗.

(i) For ε ∈ ]0, 1[, the ε-convergence time of A is the smallest time
Tε(A) ∈ Z≥0 such that, for all x0 ∈ Rn and ℓ ≥ Tε(A),

∥

∥Aℓx0 − A∗x0

∥

∥

2
≤ ε‖x0 − A∗x0‖2.

(ii) The exponential convergence factor of A, denoted by rexp(A) ∈
[0, 1[, is

rexp(A) = sup
x0 6=A∗x0

lim sup
ℓ→+∞

(‖Aℓx0 − A∗x0‖2

‖x0 − A∗x0‖2

)1/ℓ
. •

The exponential convergence factor has the following interpretation: If the
trajectory x(ℓ) = Aℓx0 maximizing the sup operator has the form x(ℓ) =
ρℓ(x0 − x∗) + x∗, for ρ < 1, then it is immediate to see that rexp(A) = ρ.

Lemma 1.72 (Exponential convergence factor of a convergent ma-
trix). If A is a convergent matrix, then rexp(A) = ρ(A).

In what follows, we are interested in studying how the convergence time
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and the exponential convergence factor of a matrix depend upon ε and upon
the dimension of the matrix itself.

Remark 1.73 (Complexity notions). Analogously to the treatment in
Section 1.5.2, we introduce some complexity notions. Let An ∈ Rn×n, n ∈ N,
be a sequence of semi-convergent matrices with limit limℓ→+∞ Aℓ

n = A∗
n, and

let ε ∈ ]0, 1]. We say that:

(i) Tε(An) is of order Ω(f(n, ε)) if, for all n and all ε, there exists an
initial condition x0 ∈ Rn such that ‖Aℓ

nx0−A∗x0‖2 > ε
∥

∥x0−A∗x0

∥

∥

2
for all times ℓ greater than a constant factor times f(n, ε);

(ii) Tε(An) is of order O(f(n, ε)) if, for all n and all ε, Tε(An) is less
than or equal to a constant factor times f(n, ε); and

(iii) Tε(An) is of order Θ(f(n, ε)) if it is both of order Ω(f(n, ε)) and of
order O(f(n, ε)). •

Lemma 1.74 (Asymptotic relationship). Let An ∈ Rn×n, n ∈ N, be
a sequence of semi-convergent matrices and let ε ∈ ]0, 1]. In the limit as
ε → 0+ and as n → +∞,

Tε(An) ∈ O
( 1

1 − rexp(An)
log ε−1

)

.

Proof. By the definition of the exponential convergence factor and of lim sup,
we know that for all η > 0, there exists N such that, for all ℓ > N ,

∥

∥Aℓx0 − A∗x0

∥

∥

2
≤ (rexp(An) + η)ℓ‖x0 − A∗x0‖2.

The ε-convergence time is upper bounded by any ℓ such that (rexp(An) +
η)ℓ ≤ ε. Selecting η = (1 − rexp(An))/2, simple manipulations lead to

ℓ ≥ 1

− log((rexp(An) + 1)/2)
log ε−1.

It is also immediate to note that 2
1−r ≥ 1

− log((r+1)/2) , for all r ∈ ]0, 1[. This

establishes the bound in the statement above. �

Next, we apply the notion of convergence time and exponential conver-
gence factor to any non-degenerate stochastic matrix whose associated di-
graph has a globally reachable node.

Lemma 1.75 (Exponential convergence factor of stochastic matri-
ces). Let F be a stochastic matrix with strictly positive diagonal entries and
whose associated digraph has a globally reachable node. Then

rexp(F ) = ρess(F ).

64

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 1: An introduction to distributed algorithms

(From equation (1.2.1), recall that ρess(F ) = max{‖λ‖C | λ ∈ spec(F ) \
{1}}.)

Proof. If v ∈ Rn is a left eigenvector of F , then, as in Proposition 1.68,

lim
ℓ→+∞

F ℓ = F ∗ = (vT1n)−11nvT .

Relying upon vT F = vT and F1n = 1n, straightforward manipulations show
that F ∗ = F ∗F = FF ∗ = F ∗F ∗ and in turn

F ℓ+1 − F ∗ = (F − F ∗)(F ℓ − F ∗).

For any w0 ∈ Rn such that w0 6= F ∗w0, define the error variable e(ℓ) :=
F ℓw0 − F ∗w0. Note that the error variable evolves according to e(ℓ + 1) =
(F − F ∗)e(ℓ) and converges to zero. Additionally, the rate at which w(ℓ) =
F ℓw0 converges to F ∗w0 is the same at which e(ℓ) converges to zero, that
is,

rexp(F − F ∗) = rexp(F ).

Therefore,

rexp(F ) = rexp(F − F ∗) = ρ(F − F ∗) = ρess(F ).

�

The following result establishes bounds on convergence factors and conver-
gence times for stochastic matrices arising from the equal-neighbor averaging
rule in equation (1.6.5).

Theorem 1.76 (Bounds on the convergence factor and the conver-
gence time). Let G be an undirected unweighted connected graph of order
n and let ε ∈ ]0, 1]. Define the stochastic matrix F = (In + D(G))−1(In +
A(G)). There exists γ > 0 (independent of n) such that the exponential
convergence factor and convergence time of F satisfy

rexp(F ) ≤ 1 − γn−3, and Tε(F ) ∈ O(n3 log ε−1),

as ε → 0+ and n → +∞.

1.6.4 Algorithms defined by tridiagonal Toeplitz and tridiagonal circulant

matrices

This section presents a detailed analysis of the convergence rates of linear
distributed algorithms defined by tridiagonal Toeplitz matrices and by cer-
tain circulant matrices. Let us start by introducing the family of matrices
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under study. For n ≥ 2 and a, b, c ∈ R, define the n×n matrices Tridn(a, b, c)
and Circn(a, b, c) by

Tridn(a, b, c) =















b c 0 . . . 0
a b c . . . 0
...

. . .
. . .

. . .
...

0 . . . a b c
0 . . . 0 a b















,

and

Circn(a, b, c) = Tridn(a, b, c) +















0 . . . . . . 0 a
0 . . . . . . 0 0
...

. . .
. . .

. . .
...

0 0 . . . 0 0
c 0 . . . 0 0















.

We call the matrices Tridn and Circn tridiagonal Toeplitz and tridiagonal
circulant, respectively. The two matrices only differ in their (1, n) and (n, 1)
entries. Note our convention that

Circ2(a, b, c) =

[

b a + c
a + c b

]

.

Note that, for a = 0 and c 6= 0 (alternatively, a 6= 0 and c = 0), the syn-
chronous networks defined by Trid(a, b, c) and Circ(a, b, c) are, respectively,
the chain and the ring digraphs introduced in Section 1.4. If both a and
c are non-vanishing, then the synchronous networks are, respectively, the
undirected versions of the chain and the ring digraphs.

Now, we characterize the eigenvalues and eigenvectors of Tridn and Circn.

Lemma 1.77 (Eigenvalues and eigenvectors of tridiagonal Toeplitz
and tridiagonal circulant matrices). For n ≥ 2 and a, b, c ∈ R, the
following statements hold:

(i) for ac 6= 0, the eigenvalues and eigenvectors of Tridn(a, b, c) are,
respectively, for i ∈ {1, . . . , n},

b + 2c

√

a

c
cos

(

iπ

n + 1

)

∈ C,

















(

a
c

)1/2
sin

(

iπ
n+1

)

(

a
c

)2/2
sin

(

2iπ
n+1

)

...
(

a
c

)n/2
sin

(

niπ
n+1

)

















∈ Cn;

(ii) the eigenvalues and eigenvectors of Circn(a, b, c) are, respectively,
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for i ∈ {1, . . . , n} and ω = exp(2π
√−1
n ),

b + (a + c) cos

(

i2π

n

)

+
√
−1(c − a) sin

(

i2π

n

)

∈ C,

and (1, ωi, . . . , ω(n−1)i)T ∈ Cn.

Proof. Both facts are discussed, for example, in Meyer (2001, Example 7.2.5
and Exercise 7.2.20). Fact (ii) requires some straightforward algebraic ma-
nipulations. �

Figure 1.19 illustrates the location of the eigenvalues of these matrices in
the complex plane.

(b, 0)

c

(a)

(b, 0)

c

(b)

Figure 1.19 The eigenvalues of Toeplitz and circulant matrices (cf., Lemma 1.77) are
closely related to the roots of unity. Plotted in the complex plane, the black
disks correspond in (a) to the eigenvalues of Trid13(a, b, c), and in (b) to the
eigenvalues of Circ14(0, b, c).

Remarks 1.78 (Inclusion relationships for eigenvalues of tridiago-
nal Toeplitz and tridiagonal circulant matrices).

(i) The set of eigenvalues of Tridn(a, b, c) is contained in the real interval
[b − 2

√
ac, b + 2

√
ac], if ac ≥ 0, and in the interval in the complex

plane [b − 2
√
−1

√

|ac|, b + 2
√
−1

√

|ac|], if ac ≤ 0.

(ii) The set of eigenvalues of Circn(a, b, c) is contained in the ellipse on
the complex plane with center b, horizontal axis 2|a+c|, and vertical
axis 2|c − a|. •

67

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 1: An introduction to distributed algorithms

Next, we characterize the convergence rate of linear algorithms defined by
tridiagonal Toeplitz and tridiagonal circulant matrices. As in the previous
section, we are interested in asymptotic results as the system dimension
n → +∞ and as the accuracy parameter ε goes to 0+.

Theorem 1.79 (Linear algorithms defined by tridiagonal Toeplitz
and tridiagonal circulant matrices). Let n ≥ 2, ε ∈ ]0, 1[, and a, b, c ∈
R. Let x : Z≥0 → Rn and y : Z≥0 → Rn be solutions to

x(ℓ + 1) = Tridn(a, b, c)x(ℓ), y(ℓ + 1) = Circn(a, b, c) y(ℓ),

with initial conditions x(0) = x0 and y(0) = y0, respectively. The following
statements hold:

(i) if a = c 6= 0 and |b| + 2|a| = 1, then limℓ→+∞ x(ℓ) = 0n with
ε-convergence time in Θ

(

n2 log ε−1
)

;

(ii) if a 6= 0, c = 0 and 0 < |b| < 1, then limℓ→+∞ x(ℓ) = 0n with
ε-convergence time in O

(

n log n + log ε−1
)

; and

(iii) if a ≥ 0, c ≥ 0, 1 > b > 0 and a + b + c = 1, then limℓ→+∞ y(ℓ) =
(

1
n1T

ny0

)

1n with ε-convergence time in Θ
(

n2 log ε−1
)

.

The proof of this result is reported in Section 1.8.6. Next, we extend
these results to another interesting set of tridiagonal matrices. For n ≥ 2
and a, b ∈ R, define the n × n matrices ATrid+

n (a, b) and ATrid−
n (a, b) by

ATrid±
n (a, b) = Tridn(a, b, a) ±















a 0 . . . . . . 0
0 0 . . . . . . 0
...

. . .
. . .

. . .
...

0 . . . . . . 0 0
0 . . . . . . 0 a















.

We refer to these matrices as augmented tridiagonal matrices. If we define

P+ =



















1 1 0 0 . . . 0
1 −1 1 0 . . . 0
1 0 −1 1 . . . 0
...

. . .
. . .

. . .

1 0 . . . 0 −1 1
1 0 . . . 0 0 −1



















,
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and

P− =



















1 1 0 0 . . . 0
−1 1 1 0 . . . 0
1 0 1 1 . . . 0
...

. . .
. . .

. . .

(−1)n−2 0 . . . 0 1 1
(−1)n−1 0 . . . 0 0 1



















,

then the following similarity transforms are satisfied:

ATrid±
n (a, b) = P±

[

b ± 2a 0
0 Tridn−1(a, b, a)

]

P−1
± . (1.6.7)

To analyze the convergence properties of the linear algorithms determined
by ATrid+

n (a, b) and ATrid−
n (a, b), we will find it useful to consider the vector

1T
n− = (1,−1, 1, . . . , (−1)n−2, (−1)n−1)T ∈ Rn.

In the following theorem, we will not assume that the matrices of interest
are semi-convergent. We will establish convergence to a trajectory, rather
than to a fixed point. For ε ∈ ]0, 1[, we say that a trajectory x : Z≥0 → Rn

converges to xfinal : Z≥0 → Rn with convergence time Tε ∈ Z≥0 if

(i) ‖x(ℓ) − xfinal(ℓ)‖2 → 0 as ℓ → +∞; and

(ii) Tε is the smallest time such that ‖x(ℓ) − xfinal(ℓ)‖2 ≤ ε‖x(0) −
xfinal(0)‖2, for all ℓ ≥ Tε.

Theorem 1.80 (Linear algorithms defined by augmented tridiag-
onal matrices). Let n ≥ 2, ε ∈ ]0, 1[, and a, b ∈ R with a 6= 0 and
|b| + 2|a| = 1. Let x : Z≥0 → Rn and z : Z≥0 → Rn be solutions to

x(ℓ + 1) = ATrid+
n (a, b)x(ℓ), z(ℓ + 1) = ATrid−

n (a, b) z(ℓ),

with initial conditions x(0) = x0 and z(0) = z0, respectively. The following
statements hold:

(i) limℓ→+∞
(

x(ℓ)−xave(ℓ)1n

)

= 0n, where xave(ℓ) = ( 1
n1T

nx0)(b+2a)ℓ,

with ε-convergence time in Θ
(

n2 log ε−1
)

; and

(ii) limℓ→+∞
(

z(ℓ) − zave(ℓ)1n−
)

= 0n, where zave(ℓ) = ( 1
n1T

n−z0)(b −
2a)ℓ, with ε-convergence time in Θ

(

n2 log ε−1
)

.

The proof of this result is reported in Section 1.8.6.

Remark 1.81 (From Toeplitz to stochastic matrices). A tridiagonal
Toeplitz matrix is not stochastic unless its off-diagonal elements are zero.
The tridiagonal circulant matrices Circn and augmented tridiagonal ma-
trices ATrid+

n studied in Theorem 1.79(iii) and Theorem 1.80(i) are slight
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modifications of tridiagonal Toeplitz matrices and are doubly stochastic. In-
deed, the evolutions converge to the average consensus value, as predicted by
Corollary 1.70. Note that convergence times obtained for Circn and ATrid+

n

are consistent with the upper bound predicted by Theorem 1.76. •

We conclude this section with some useful bounds.

Lemma 1.82 (Bounds on vector norms). Assume that x ∈ Rn, y ∈
Rn−1, and z ∈ Rn−1 jointly satisfy

x = P+

[

0
y

]

, x = P−

[

0
z

]

.

Then 1
2‖x‖2 ≤ ‖y‖2 ≤ (n − 1)‖x‖2 and 1

2‖x‖2 ≤ ‖z‖2 ≤ (n − 1)‖x‖2.

The proof of this result is based on spelling out the coordinate expressions
for x, y, and z, and is left to the reader as Exercise E1.29.

1.7 NOTES

Dynamical systems and stability theory

Our definition of a state machine is very basic; more general definitions of
state machines can be found in the literature (see Sipser, 2005), but the one
presented in this chapter is sufficient for our purposes.

The literature on dynamical and control systems is vast. The main
tool that we use in later chapters is the LaSalle Invariance Principle, ob-
tained by LaSalle (1960) and discussed in LaSalle (1986); see also the earlier
works by Barbašin and Krasovskĭı (1952) and Krasovskĭı (1963) for related
versions. Relevant sample references include modern texts on dynamical
systems (Guckenheimer and Holmes, 1990), linear control systems (Chen,
1984), nonlinear control systems (Khalil, 2002), robust control (Dullerud
and Paganini, 2000), and discrete-event systems (Cassandras and Lafortune,
2007).

Graph theory

The basic definitions of graph theory are standard in the literature; see, for
example, Biggs (1994), Godsil and Royle (2001), and Diestel (2005). The
discussion about graph algorithms is taken from Cormen et al. (2001), which
also contains detailed discussion on implementation and complexity issues.
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Regarding Section 1.4.4.4, standard references on combinatorial optimiza-
tion include Vazirani (2001) and Korte and Vygen (2005).

In Section 1.4.5, all statements about powers of the adjacency matrix are
standard results in algebraic graph theory; see, for example Biggs (1994)
and Godsil and Royle (2001). Lemma 1.27 is a recent result from Lin et al.
(2005) andMoreau (2005). Proposition 1.35, on the fact that a weighted
digraph is aperiodic and irreducible if and only if its adjacency matrix is
primitive, is related to standard results in the theory of Markov chains; see,
for example Seneta (1981) and Meyn and Tweedie (1999). Our proof adopts
the approach in Lin (2005). Laplacian matrices have numerous remarkable
properties; two elegant surveys are Mohar (1991) and Merris (1994). The-
orem 1.37, characterizing the properties of the Laplacian matrix, contains
some recent results. A proof of statement (ii) is given in Olfati-Saber and
Murray (2004); in our proof, we follow the approach in Francis (2006). State-
ment (iii) is proved by Lin et al. (2005) and Francis (2006); the following
equivalent version is proved in Ren and Beard (2005): a weighted digraph G
contains a spanning tree if and only if rank(L(rev(G))) = n − 1. Regarding
statement (iv), the equivalence between (iv)a and (iv)b is proved by Olfati-
Saber and Murray (2004) and the equivalence between (iv)b and (iv)c is
proved by Moreau (2005).

Distributed algorithms

Our discussion of distributed algorithms is extremely incomplete. We have
only presented a few token ideas and we refer to the textbooks by Lynch
(1997) and Peleg (2000) for detailed treatments. Let us mention briefly that
many more efficient algorithms are available in the literature—for exam-
ple, the GHS algorithm (Gallager et al., 1983) for minimum spanning tree
computation and consensus algorithms with communication and processors
faults; much attention is dedicated to fault tolerance in asynchronous sys-
tems with shared memory and in asynchronous network systems.

Linear distributed algorithms

Distributed linear algorithms—and, in particular, averaging iterations that
achieve consensus among processors—have a long and rich history. The
richness comes from the vivid analogies with physical processes of diffusion,
with Markov chain models, and with the sharp theory of positive matrices
developed by Perron and Frobenius. What follows is a necessarily incom-
plete list. An early reference on averaging opinions and achieving consensus
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is DeGroot (1974). An early reference on the connection between averaging
algorithms, the products of stochastic matrices, and ergodicity in inhomo-
geneous Markov chains is Chatterjee and Seneta (1977) – the history of
inhomogeneous Markov chains being a classic topic since the early twen-
tieth century. The stochastic setting was investigated in Cogburn (1984).
Load balancing with divisible tasks in parallel computers is discussed in Cy-
benko (1989). A comprehensive theory of asynchronous parallel processors
implementing distributed gradient methods and time-dependent averaging
algorithms is developed in the series of works Tsitsiklis (1984), Tsitsiklis
et al. (1986), and Bertsekas and Tsitsiklis (1997). Much interest for aver-
aging algorithms arose from the influential work on flocking by Jadbabaie
et al. (2003). Sharp conditions for convergence for the time-dependent set-
ting were obtained in Moreau (2005). Finally, proper attention was given to
the average consensus problem in Olfati-Saber and Murray (2004).

Regarding Theorem 1.63, characterizing the convergence of averaging al-
gorithms defined by sequences of stochastic matrices, we note that: (1)
the PhD thesis Tsitsiklis (1984) established convergence under a strong-
connectivity assumption; (2) a sufficient condition was independently re-
discovered in Jadbabaie et al. (2003), adopting a result from Wolfowitz
(1963); and (3) Moreau (2003, 2005) obtained the necessary and sufficient
condition (for uniform convergence in non-degenerate sequences) involving
the existence of a uniformly globally reachable node. The work in Moreau
(2003, 2005) is an early reference also for Theorem 1.65; additional related
results and a historical discussion appeared in Blondel et al. (2005) and Hen-
drickx (2008). The estimates of the convergence factor given in Theorem 1.76
in Section 1.6.3 were proved by Landau and Odlyzko (1981). Our treatment
in Section 1.6.4 follows Mart́ınez et al. (2007).

Among the numerous recent directions of research on consensus and av-
eraging, we would like to mention the following: continuous-time consensus
algorithms (Olfati-Saber and Murray, 2004; Moreau, 2004; Lin et al., 2004;
Ren and Beard, 2005; Lin et al., 2005, 2007), consensus over random net-
works (Hatano and Mesbahi, 2005; Wu, 2006; Patterson et al., 2007; Picci
and Taylor, 2007; Porfiri and Stilwell, 2007; Tahbaz-Salehi and Jadbabaie,
2008; Fagnani and Zampieri, 2009), consensus in finite time (Cortés, 2006;
Sundaram and Hadjicostis, 2008), consensus in small-world networks (Olfati-
Saber, 2005; Durrett, 2006; Tahbaz-Salehi and Jadbabaie, 2007), consen-
sus algorithms for general functions (Bauso et al., 2006; Cortés, 2008b;
Lorenz and Lorenz, 2008; Sundaram and Hadjicostis, 2008), connections
with the heat equation and partial difference equation (Ferrari-Trecate et al.,
2006), spatially decaying interactions (Cucker and Smale, 2007), conver-
gence in time-delayed and asynchronous settings (Blondel et al., 2005; An-
geli and Bliman, 2006; Fang and Antsaklis, 2008), quantized consensus
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problems (Savkin, 2004; Kashyap et al., 2007; Carli et al., 2009; Zhu and
Mart́ınez, 2008b), consensus on manifolds (Scardovi et al., 2007; Sarlette
and Sepulchre, 2009; Igarashi et al., 2007), applications to distributed signal
processing (Spanos et al., 2005; Xiao et al., 2005; Olfati-Saber et al., 2006;
Zhu and Mart́ınez, 2008a), characterization of convergence rates and time
complexity (Landau and Odlyzko, 1981; Olshevsky and Tsitsiklis, 2009; Cao
et al., 2008; Carli et al., 2008). Numerous interesting results are reported
in recent PhD theses (Lin, 2005; Cao, 2007; Lorenz, 2007; Barooah, 2007;
Carli, 2008; Hendrickx, 2008; Sarlette, 2009). Finally, we would like to point
out two recent surveys (Olfati-Saber et al., 2007; Ren et al., 2007) and the
text by (Ren and Beard, 2008).

Synchronization is a fascinating topic related to averaging algorithms. A
very early reference is the work by Huygens (1673) on coupled pendula. The
synchronization of oscillators in dynamical systems has received increasing
attention, and key references include Wiener (1958), Kuramoto (1975), Win-
free (1980), Kuramoto (1984), Strogatz (2000), and Nijmeijer (2001); see
also the widely accessible Strogatz (2003). Under all-to-all interactions,
Mirollo and Strogatz (1990) prove synchronization of a collection of “inte-
grate and fire” biological oscillators. Recent works on the Kuramoto and
other synchronized oscillator models include Jadbabaie et al. (2004), Chopra
and Spong (2009), Triplett et al. (2006), Papachristodoulou and Jadbabaie
(2006), Wang and Slotine (2006).

1.8 PROOFS

This section gathers the proofs of the main results presented in the chapter.

1.8.1 Proof of Theorem 1.21

Here we provide the proof of the LaSalle Invariance Principle for set-valued
discrete-time dynamical systems. We remark that Theorem 1.19 is an im-
mediate consequence of Theorem 1.21 and that Theorem 1.20 is proved in
a similar way (for details, we refer to (Khalil, 2002)).

Proof of Theorem 1.21. Let γ be any evolution of (X, X0, T ) starting from
W . Let Ω(γ) denote the ω-limit set6 of the sequence γ = {γ(ℓ) | ℓ ∈ Z≥0};
since W is closed, it follows that Ω(γ) ⊂ W . Next, we prove that Ω(γ) is
weakly positively invariant. Let z ∈ Ω(γ). Then there exists a subsequence

6The ω-limit set of a sequence γ = {γ(ℓ) | ℓ ∈ Z≥0} is the set of points y for which there exists
a subsequence {γ(ℓm) | m ∈ Z≥0} of γ such that lim

m→+∞
γ(ℓm) = y.
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{γ(ℓm) | m ∈ Z≥0} of γ such that lim
m→+∞

γ(ℓm) = z. Consider the sequence

{γ(ℓm + 1) | m ∈ Z≥0}. Since this sequence is bounded, it has a convergent
subsequence. For ease of notation, we use the same notation to refer to
it, that is, there exists y such that lim

m→+∞
γ(ℓm + 1) = y. By definition,

y ∈ Ω(γ). Moreover, using the fact that T is closed, we deduce that y ∈ T (z).
Therefore, Ω(γ) is weakly positively invariant.

Now, consider the sequence V ◦ γ = {V (γ(ℓ)) | ℓ ∈ Z≥0}. Since γ is
bounded and V is non-increasing along T on W , the sequence V ◦ γ is
decreasing and bounded from below, and therefore, convergent. Let c ∈ R

satisfy lim
ℓ→+∞

V (γ(ℓ)) = c. Next, we prove that the value of V on Ω(γ) is

constant and equal to c. Take any z ∈ Ω(γ). Accordingly, there exists a
subsequence {γ(ℓm) | m ∈ Z≥0} such that lim

m→+∞
γ(ℓm) = z. Since V is

continuous, lim
m→+∞

V (γ(ℓm)) = V (z). From lim
ℓ→+∞

V (γ(ℓ)) = c, we conclude

that V (z) = c.

Finally, the fact that Ω(γ) is weakly positively invariant and V being
constant on Ω(γ) implies that

Ω(γ) ⊂ {x ∈ X | ∃y ∈ T (x) such that V (y) = V (x)}.
Therefore, we conclude that lim

ℓ→+∞
dist(γ(ℓ), S ∩ V −1(c)) = 0, where S is

the largest weakly positively invariant set contained in {x ∈ X | ∃y ∈
T (x) such that V (y) = V (x)}. �

1.8.2 Proofs of Lemmas 1.26 and 1.27

Proof of Lemma 1.26. The first statement is obvious. Regarding the second
statement, we prove that a topologically balanced digraph with a globally
reachable node is strongly connected, and leave the proof of the other case
to the reader. We reason by contradiction. Assume that G is not strongly
connected. Let S ⊂ V be the set of all nodes of G that are globally reachable.
By hypothesis, S 6= ∅. Since G is not strongly connected, we have S (

V . Note that any outgoing edge with origin in a globally reachable node
automatically makes the destination a globally reachable node too. This
implies that there cannot be any outgoing edges from a node in S to a node
in V \ S. Let v ∈ V \ S such that v has an out-neighbor in S (such a node
must exist, since otherwise the nodes in S cannot be globally reachable).
Since by hypothesis G is balanced, there must exist an edge of the form
(w, v) ∈ E. Clearly, w 6∈ S, since otherwise v would be globally reachable
too, which is a contradiction. Therefore, w ∈ V \ S. Again, using the
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fact that G is topologically balanced, there must exist an edge of the form
(z, w) ∈ E. As before, z ∈ V \ S (note that z = v is a possibility). Since
V \ S is finite and so is the number of possible edges between its nodes,
applying this argument repeatedly, we find that there exists a vertex whose
out-degree is strictly larger than its in-degree, which is a contradiction with
the fact that G is topologically balanced. We refer to Cortés (2008b) for the
proof that G is Eulerian. �

Proof of Lemma 1.27. (i) =⇒ (ii) Assume that i ∈ V is the root of
the spanning tree and take an arbitrary pair of nonempty, disjoint sub-
sets U1, U2 ⊂ V . If i ∈ U1, then there must exist a path from i ∈ U1 to a
node in U2. Therefore, U2 must have an in-neighbor. Analogously, if i ∈ U2,
then U1 must have an in-neighbor. Finally, it is possible that i /∈ U1 ∪U2.
In this case, there exist paths from i to both U1 and U2, that is, both sets
have in-neighbors.

(ii) =⇒ (i) This is proved by finding a node from which there exists a
path to all others. We do this in an algorithmic manner using induction. At
each induction step k, except the last one, four sets of nodes are considered,
U1(k) ⊂ W1(k) ⊂ V , U2(k) ⊂ W2(k) ⊂ V , with the following properties:

(a) the sets W1(k) and W2(k) are disjoint; and

(b) from each node of Us(k) there exists a path to each other node in
Ws(k) \ Us(k), s ∈ {1, 2}.

Induction Step k=1: Set U1 = W1 = {i1} and U2 = W2 = {i2}, where i1, i2
are two arbitrary different nodes of the graph that satisfy the properties (a)
and (b).

Induction Step k > 1: Suppose that for k − 1 we found sets U1(k − 1) ⊂
W1(k − 1) and U2(k − 1) ⊂ W (k − 1) as in (a) and (b). Since U1(k − 1)
and U2(k − 1) are disjoint, then there exists either an edge (ik, j1) with
j1 ∈ U1(k − 1), ik ∈ V \ U1(k − 1), or an edge (ik, j2) with j2 ∈ U2(k − 1)
and ik ∈ V \ U2(k − 1). Suppose that an edge (ik, j2) exists (the case of a
edge (ik, j1) can be treated in a similar way). Only four cases are possible.

(A) If ik ∈ W1(k−1) and W1(k−1)∪W2(k−1) = V , then we can termi-
nate the algorithm and conclude that from any node h ∈ U1(k − 1)
there exists a path to all other nodes in the graph and thus there is
a spanning tree.
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(B) If ik ∈ W1(k − 1) and W1(k − 1)∪W2(k − 1) 6= V , then set:

U1(k) = U1(k − 1),

W1(k) = W1(k − 1)∪W2(k − 2),

U2(k) = W2(k) = {hk},
where hk is an arbitrary node not belonging to W1(k−1)∪W2(k−1).

(C) If ik /∈ W1(k − 1)∪W2(k − 1), then set

U1(k) = U1(k − 1),

W1(k) = W1(k − 1),

U2(k) = {ik},
W2(k) = W2(k − 1)∪{ik}.

(D) If ik ∈ W2(k − 1) \ U2(k − 1) then

U1(k) = U1(k − 1),

W1(k) = W1(k − 1),

U2(k) = U2(k − 1)∪{ik},
W2(k) = W2(k − 1).

The algorithm terminates in a finite number of induction steps because at
each step, except when finally case (A) holds true, either the number of
nodes in W1 ∪W2 increases, or the number of nodes in W1 ∪W2 remains
constant and the number of nodes in U1 ∪U2 increases. �

1.8.3 Proofs of Propositions 1.33 and 1.35

Proof of Proposition 1.33. (ii) =⇒ (i) We aim to show that there exist
directed paths from any node to any other node. Fix i ∈ {1, . . . , n} and let
Ri ⊂ {1, . . . , n} be the set of nodes that belong to directed paths originating
from node i. Denote the unreachable nodes by Ui = {1, . . . , n} \ Ri. We
argue that Ui cannot contain any element, because if it does, then Ri ∪Ui

is a nontrivial partition of the index set {1, . . . , n} and irreducibility implies
the existence of a non-zero entry ajk with j ∈ Ri and k ∈ Ui. Therefore,
Ui = ∅, and all nodes are reachable from i. The converse statement (i) =⇒
(ii) is proved similarly.

(i) =⇒ (iii) If G is strongly connected, then there exists a directed path
of length k ≤ n − 1 connecting any node i to any other node j. Hence,
by Lemma 1.32(ii), the entry (Ak)ij is strictly positive. This immediately
implies the statement (iii). The converse statement (iii) =⇒ (i) is proved
similarly. �
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Next, we present a useful number theory result. This states that relatively
co-prime numbers generate all sufficiently large natural numbers.

Lemma 1.83 (Natural number combination). Let a1, . . . , aN ∈ N have
greatest common divisor 1. There exists k ∈ N such that every number
m > k can be written as

m = α1a1 + · · · + αNaN ,

for appropriate numbers α1, . . . , αN ∈ N.

Proof. Assume that a1 ≤ · · · ≤ aN without loss of generality. From the
generalized Bezout identity we know that, for any numbers a1, . . . , aN with
greatest common divisor 1, there exist integers γ1, . . . , γN ∈ Z such that

1 = γ1a1 + · · · + γNaN . (1.8.1)

Pick k = |γ1|a2
1 + · · ·+ |γN |a2

N ∈ N. Every number m > k can be written as

m = k + mqtnta1 + mrmndr,

for appropriate numbers mqtnt ≥ 0 and 1 ≤ mrmndr < a1. Using the defini-
tion of k and equation (1.8.1), we write

m =
(

|γ1|a2
1 + · · · + |γN |a2

N

)

+ mqtnta1 + mrmndr(γ1a1 + · · · + γNaN )

= mqtnta1 + (|γ1|a1 + mrmndrγ1)a1 + · · · + (|γN |aN + mrmndrγN )aN .

The proof is now completed by noting that each integer number (|γ1|a1 +
mrmndrγ1), . . . , (|γN |aN + mrmndrγN ) is strictly positive, because mrmndr <
a1 ≤ · · · ≤ aN . �

Proof of Proposition 1.35. (i) =⇒ (ii) Pick any i. We claim that there
exists a number k(i) with the property that, for all m > k(i), we have that
(Am)ii is positive, that is, there exists a directed path from i to i of length
m for all m larger than a number k(i). To show this claim, let {c1, . . . , cN}
be the set of the cycles of G and let {ℓ1, . . . , ℓN} be their lengths. Because
G is aperiodic, Lemma 1.83 implies the existence of a number h(ℓ1, . . . , ℓN )
such that any number larger than h(ℓ1, . . . , ℓN ) is a linear combination of
ℓ1, . . . , ℓN with natural numbers as coefficients. Because G is strongly con-
nected, there exists a path γ of arbitrary length Γ(i) that starts at i, contains
a vertex of each of the cycles c1, . . . , cN , and terminates at i. Now, we claim
that k(i) = Γ(i) + h(ℓ1, . . . , ℓN ) has the desired property. Indeed, pick any
number m > k(i) and write it as k = Γ(i)+β1ℓ1+· · ·+βNℓN for appropriate
numbers β1, . . . , βN ∈ N. A directed path from i to i of length m is con-
structed by attaching to the path γ the following cycles: β1 times the cycle
c1, β2 times the cycle c2, . . . , βN times the cycle cN . Finally, having proved
the existence of k(i) with the desired property, let K be the maximum k(i)
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over all nodes i, and recall that diam(G) is the maximum pairwise distance
between nodes. Clearly, AM is positive for all M > K + diam(G).

(ii) =⇒ (i) From Lemma 1.32 we know that Ak > 0 means that there are
paths from every node to every other node of length k. Hence, the digraph
G is strongly connected. Next, we prove aperiodicity. Because G is strongly
connected, each node of G has at least one outgoing edge, that is, for all
i, there exists at least one index j such that aij > 0. This fact implies
that the matrix Ak+1 = AAk is positive via the following simple calculation:
(Ak+1)il =

∑n
h=1 aih(Ak)hl ≥ aij(A

k)jl > 0. In summary, we have shown
that, if Ak is positive for some k, then Am is positive for all subsequent
m ≥ k. Therefore, there are cycles in G of any length greater than or equal
to k, which means that G is aperiodic. �

1.8.4 Proof of Theorem 1.37

Proof. We begin with statement (i). Let lij , for i, j ∈ {1, . . . , n}, be the
entries of L(G). Note that lii =

∑n
j=1,j 6=i aij ≥ 0 and lij = −aij ≤ 0 for

i 6= j. By the Geršgorin disks Theorem 1.2, we know that each eigenvalue
of L(G) belongs to at least one of the disks

{

z ∈ C
∣

∣ ‖z − lii‖C ≤
n

∑

j=1,j 6=i

|lij |
}

=
{

z ∈ C | ‖z − lii‖C ≤ lii
}

.

These disks contain the origin 0n and complex numbers with a positive real
part. This concludes the proof of statement (i).

Regarding statement (ii), note that Dout(G) is invertible because G is
strongly connected. Define the two matrices Ã = Dout(G)−1A(G) and L̃ =
Dout(G)−1L(G), and note that they satisfy L̃ = In − Ã. Since Dout(G)
is diagonal, the matrices A(G) and Ã have the same pattern of zeros and
positive entries. This observation and the assumption that G is strongly
connected imply that Ã is nonnegative and irreducible. By the Perron–
Frobenius Theorem 1.11, the spectral radius ρ(Ã) is a simple eigenvalue.
Furthermore, one can verify that Ã is row-stochastic (see Lemma 1.31),
and therefore, its spectral radius is 1 (see Exercise E1.4). In summary, we
conclude that 1 is a simple eigenvalue of Ã, that 0 is a simple eigenvalue of
L̃, that L̃ has rank n − 1, and that L(G) has rank n − 1.

Regarding statement (iii), we first prove that rank(L(G)) = n− 1 implies
the existence of a globally reachable vertex. By contradiction, let G con-
tain no globally reachable vertex. Then, by Lemma 1.27, there exist two
nonempty disjoint subsets U1, U2 ⊂ V (G) without any out-neighbor. After
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a permutation of the vertices, the adjacency matrix can be partitioned into
the blocks

A(G) =





A11 0 0
0 A22 0

A31 A32 A33



 .

Here, A12 and A13 vanish because U1 does not have any out-neighbor, and
A21 and A23 vanish because U2 does not have any out-neighbor. Note that
D11 − A11 and D22 − A22 are the Laplacian matrices of the graphs defined
by restricting G to the vertices in U1 and in U2, respectively. Therefore, the
eigenvalue 0 has geometric multiplicity at least 2 for the matrix Dout(G) −
A(G). This contradicts the assumption that rank(L(G)) = n − 1.

Next, still regarding statement (iii), we prove that the existence of a glob-
ally reachable vertex implies rank(L(G)) = n−1. Without loss of generality,
we assume that G contains self-loops at each node (so that Dout is invert-
ible). Let R be the set of globally reachable vertices; let r ∈ {1, . . . , n} be its
cardinality. If r = n, then the graph is strongly connected and statement (ii)
implies that rank(L(G)) = n− 1. Therefore, assume that r < n. Renumber
the vertices so that R is the set of the first r vertices. After this permu-
tation, the adjacency matrix and the Laplacian matrix can be partitioned
into the blocks

A(G) =

[

A11 0
A21 A22

]

, and L(G) =

[

L11 0
L21 L22

]

.

Here, A12 ∈ Rr×(n−r) vanishes, because there can be no out-neighbor of R;
otherwise that out-neighbor would be a globally reachable vertex in V \ R.
Note that the rank of L11 ∈ Rr×r is exactly r−1, since the digraph associated
to A11 is strongly connected. To complete the proof it suffices to show that
the rank of L22 ∈ R(n−r)×(n−r) is full. Note that the same block partition
applies to the matrices Ã = D−1

outA and L̃ = D−1
outL considered in the proof

of statement (ii) above. With this block decomposition, we compute

Ãn−1 =

[

Ãn−1
11 0

Ã21(n − 1) Ãn−1
22

]

,

for some matrix Ã21(n − 1) that depends upon Ã11, Ã21 and Ã22. Because
a globally reachable node in G is globally reachable also in the digraph
associated to Ã, Proposition 1.33(v) implies that Ã21(n − 1) is positive.
This fact, combined with the fact that Ã and hence Ãn−1 are row-stochastic,
implies that Ãn−1

22 has maximal row sum (that is, ∞-induced norm) strictly

less than 1. Hence, the spectral radii of Ãn−1
22 and of Ã22 are strictly less

than 1. Since Ã22 has spectral radius strictly less than 1, the matrix L̃22 =
In−r − Ã22, and in turn the matrix L22, have full rank.

Regarding statement (iv), the equivalence between (iv)a and (iv)b is
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proved as follows. Because
∑n

j=1 lij = dout(vi)−din(vi) for all i ∈ {1, . . . , n},
it follows that 1T

nL(G) = 0T
n if and only if Dout(G) = Din(G). Next, we

prove that (iv)b implies (iv)c. Suppose that L(G)T1n = 0T
n and consider

the system γ̇(t) = −L(G)γ(t), γ(0) = x0, together with the positive definite
function V : Rn → R defined by V (x) = xT x. We compute the Lie derivative
of the function V along the vector field x 7→ −L(G)x as V̇ (x) = −2xT L(G)x.
Note that V̇ (x) ≤ 0, for all x ∈ Rn, is equivalent to L(G) + L(G)T ≥ 0.
Because 1T

nL(G) = 0T
n and L(G)1n = 0n, it can immediately be established

that exp(−L(G)t), t ∈ R, is a doubly stochastic matrix. From Theorem 1.1,
we know that if we let {Pα} be the set of n× n permutation matrices, then
there exist time-dependent convex combination coefficients

∑

α λα(t) = 1,
λα(t) ≥ 0, such that exp(−L(G)t) =

∑

α λα(t)Pα. By the convexity of V
and its invariance under coordinate permutations, for any x ∈ Rn, we have

V (exp(−L(G)t)x) = V (
∑

α

λα(t)Pαx)

≤
∑

α

λα(t)V (Pαx) =
∑

α

λα(t)V (x) = V (x) .

In other words, V (exp(−L(G)t)x) ≤ V (x) for all x ∈ Rn, which implies
V̇ (x) ≤ 0, for all x ∈ Rn. Finally, we prove that (iv)c implies (iv)b. By
assumption, −xT (L(G) + L(G)T )x = −2xT L(G)x ≤ 0 for all x ∈ Rn. In
particular, for any small ε > 0 and x = 1n − εL(G)T1n,

−(1T
n − ε1T

nL(G))L(G)(1n − εL(G)T1n) = ε‖L(G)T1n‖2
2 + O(ε2) ≤ 0,

which is possible only if L(G)T1n = 0T
n . �

1.8.5 Proofs of Theorem 1.63 and Proposition 1.67

In this section, we prove Theorem 1.63. The exposition follows along the
main lines of the original proof by Moreau (2005), with the variation of using
the LaSalle Invariance Principle for set-valued dynamical systems, presented
as Theorem 1.21. We begin with some preliminary results.

Lemma 1.84 (Union of digraphs and sums of adjacency matrices).
Let G1, . . . , Gδ be unweighted digraphs with common node set {1, . . . , n} and
adjacency matrices A1, . . . , Aδ. The unweighted digraph

G1 ∪ · · · ∪Gδ = ({1, . . . , n}, E(A1)∪ · · · ∪E(Aδ))

is equal to the unweighted digraph associated to the nonnegative matrix
∑

k∈{1,...,δ} Ak, that is, the unweighted digraph ({1, . . . , n}, E(A1+· · ·+Aδ)).

Proof. If (i, j) ∈ ∪k∈{1,...,δ} E(Gk), then there exists k0 ∈ {1, . . . , δ} such
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that (i, j) ∈ E(Gk0
). Denoting the entries of the matrix Ak by aij(k), this

implies that aij(k0) > 0, that aij(1) + · · · + aij(δ) > 0, and that (i, j) is an
edge in E(A1 + · · · + Aδ). The converse statement is easily proved with an
analogous reasoning. �

In what follows, for α ∈ ]0, 1], let F(α) denote the set of n× n stochastic
matrices that are non-degenerate with respect to α. Given α ∈ ]0, 1] and
δ ∈ N, define the sets Fδ(α) ⊂ Rn×n by

Fδ(α) =
{

F ∈ F(αδ) | ∃F1, . . . , Fδ ∈ F(α) such that F = Fδ · · ·F1

and G(F1)∪ · · · ∪G(Fδ) contains a globally reachable node
}

,

or, equivalently by Proposition 1.33,

Fδ(α) =
{

F ∈ F(αδ) | ∃F1, . . . , Fδ ∈ F(α) such that F = Fδ . . . F1

and a column of (F1 + · · · + Fδ)
n has positive entries

}

.

Lemma 1.85 (Compact sets of stochastic matrices). For α ∈ ]0, 1],
the sets F(α) and Fδ(α), δ ∈ N, are compact.

Proof. All sets are clearly bounded. In Exercise E1.24, we invite the reader
to prove that F(α) is closed. Let us now prove that Fδ(α) is closed. Consider
a matrix sequence {F (k) | k ∈ N} ⊂ Fδ(α) convergent to some matrix F .
Because F(αδ) is closed, we establish that F ∈ F(αδ). Because each matrix
F (k) belongs to Fδ(α), there exist matrices F1(k), . . . , Fδ(k) ∈ F(α) such
that F (k) = Fδ(k) · · ·F1(k). We claim that there exists a sequence kl ∈ N,
for l ∈ N, such that, for all s ∈ {1, . . . , δ}, the matrix sequences Fs(kl), l ∈ N,
are convergent. (To see this, note that F1(k) takes value in a compact set;
hence it must have a convergent subsequence. Restrict F2(k) to the instants
of time in the convergent subsequence for F1(k) and observe that it takes
value in a compact set, etc.) Therefore, there exist matrices Fs, to which the
matrix sequences Fs(kl), l ∈ N, converge. Taking the limit as l → +∞ in the
equality F (kl) = Fδ(kl) · · ·F1(kl), we establish that F = Fδ · · ·F1. Finally,
it remains to be shown that a column of B := (F1 + · · · + Fδ)

n has positive
entries. For k ∈ N, define B(k) = (F1(k)+ · · ·+Fδ(k))n. Clearly, B(k) → B
as k → +∞. By the definition of the sequence F (k), each B(k) = (bij(k))
has the property that there exists jk ∈ {1, . . . , n} such that bijk

(k) > 0 for
all i ∈ {1, . . . , n}. Since {1, . . . , n} is a finite set, there exists j0 ∈ {1, . . . , n}
that satisfies this property for an infinite subsequence of matrices B(kl),
l ∈ N. With some straightforward bookkeeping, we write

(B(kl))ij0 =
δ

∑

a1,...,an=1

n
∑

h1=1

· · ·
n

∑

hn−1=1

(Fa1
(kl))ih1

· · · (Fan
(kl))hn−1j0 .
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Note that, because Fs(k) ∈ F(α), for s ∈ {1, . . . , δ}, each nonzero entry
Fs(k) is lower bounded by α > 0. Furthermore, each entry (B(kl))ij0 is the
sum of nonnegative terms, each of which is the product of n factors, each
of which is lower bounded by α. Hence, because (B(kl))ij0 is positive, it
is also lower bounded by αn. Since lim

l→+∞
B(kl) = B, by the compactness

of [αn, 1]∪{0}, it must be that B = (bij) satisfies bji0 ≥ αn > 0 for all
j ∈ {1, . . . , n}. In particular, this implies that F ∈ Fδ(α) and then Fδ(α) is
closed. �

Finally, we are able to prove the equivalences in Theorem 1.63.

Proof of Theorem 1.63. First, we prove that (i) implies (ii). Suppose that
for all durations δ ∈ N, there exists some ℓ0 ∈ N such that the digraph with
edges ∪s∈[ℓ0,ℓ0+δ] E(F (s)) does not contain a globally reachable node. By
Lemma 1.27, there must exist a set of nodes U1, U2 ⊂ {1, . . . , n} such that
there are no out-going edges (i1, j1), with i1 ∈ U1, i1 ∈ {1, . . . , n} \ U1 or
(i2, j2), with j2 ∈ U2, i2 ∈ {1, . . . , n} \ U2. Take any values a, b ∈ R, a 6= b,
and consider the initial conditions:

wi(ℓ0) =











a, i ∈ U1,

b, i ∈ U2,

c ∈ co(a, b), i ∈ {1, . . . , n} \ (U1 ∪U2).

Because of the properties of U1 and U2, for all δ ∈ N, we must have

wj(ℓ0 + δ + 1) =











a, j ∈ U1,

b, j ∈ U2,

c ∈ co(a, b), j ∈ {1, . . . , n} \ (U1 ∪U2).

Because δ can be chosen arbitrarily large, one can easily construct a con-
tradiction with the fact that diag(Rn) is supposed to be uniformly globally
attractive.

Next, we show that (ii) implies (i). Let α ∈ ]0, 1] to be the scalar with
respect to which the sequence is non-degenerate. Consider the set-valued
discrete-time dynamical system (Rn, Rn, Tα,δ), with evolution map Tα,δ :
Rn ⇉ Rn defined by

Tα,δ(w) = {Fw | F ∈ Fδ(α)}.
Because of this definition, any trajectory w : Z≥0 → Rn of the averaging
algorithm (1.6.2) satisfies

w((k + 1)δ) ∈ Tα,δ(w(kδ)), k ∈ Z≥0.
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In what follows, we intend to use the LaSalle Invariance Principle for set-
valued discrete dynamical systems, presented as Theorem 1.21, to prove that
lim

ℓ→+∞
dist(w(kℓ), diag(Rn)) = 0. This will then imply, by Lemma 1.24, the

uniform attractivity statement in the theorem. In the following, we check
the conditions of the theorem.

Closedness of the set-valued dynamical system. Consider a pair of vector
sequences {xk | k ∈ N} and {yk | k ∈ N} in Rn such that limk→+∞xk =
x, limk→+∞yk = y, and yk ∈ Tα,δ(xk), for all k ∈ N. We need to show
that y ∈ Tα,δ(x). By definition of Tα,δ and because yk ∈ Tα,δ(xk), there
exists a sequence {F (k) | k ∈ N} ⊆ Fδ(α) such that F (k)xk = yk, for all
k ∈ N. Furthermore, since Fδ(α) is compact by Lemma 1.85, there exists
a subsequence {F (kl) | l ∈ N} that is convergent to some F ∈ Fδ(α). The
desired conclusion follows from

y = lim
l→+∞

ykℓ
= lim

l→+∞
F (kℓ)xkℓ

= Fx.

Non-increasing Lyapunov function. Define the function V : Rn → R≥0 by

V (x) = max
i∈{1,...,n}

xi − min
i∈{1,...,n}

xi.

Note that V is continuous. Pick any x ∈ Rn and any stochastic matrix
F ∈ Fδ(α). Recall that ‖x‖∞ = maxi∈{1,...,n} |xi|, and that ‖F‖∞ = 1.
Therefore, by the definition of the induced norm, ‖Fx‖∞ ≤ ‖x‖∞. Similarly,
in components,

(Fx)i =
∑

j∈{1,...,n}
fijxj ≥

(

∑

j∈{1,...,n}
fij

)

min
k∈{1,...,n}

xk,

which implies mini∈{1,...,n}(Fx)i ≥ mink∈{1,...,n} xk. Therefore, we have that
V (Fx) ≤ V (x) for all x ∈ Rn and F ∈ Fδ(α). In other words, the function
V is non-increasing along Tα,δ in Rn.

Boundedness. It can immediately be seen that, since ‖Fx‖∞ ≤ ‖x‖∞
for all stochastic matrices F and vectors x, the trajectory k 7→ w(kδ) is
bounded.

Invariant set. By Theorem 1.21, any trajectory of Tα,δ, and hence also the
trajectory w : Z≥0 → Rn of the averaging algorithm (1.6.2), will converge
to the largest weakly positively invariant set contained in a level set of the
Lyapunov function V and in a set where the Lyapunov function does not
decrease along T . In the following, we determine that this set must be
contained in diag(Rn).

For k ∈ N fixed, assume that w(kδ) satisfies V (w(kδ)) > 0. Given the av-
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eraging algorithm (1.6.2) defined by the sequence {F (ℓ) | ℓ ∈ Z≥0} ⊂ F(α),
define F1(k) = F (k + 1), . . . , Fδ(k) = F (k + δ). Additionally, define
F (k) = Fδ(k) · · ·F1(k) and note that F (k) ∈ Fδ(α), by construction. With
this notation, note that w(kδ + s) = Fs(k) · · ·F1(k)w(kδ) for s ∈ {1, . . . , δ}.
Define wM = maxi∈{1,...,n} wi(kδ) and wm = mini∈{1,...,n} wi(kδ); by hypoth-
esis we know wM > wm. Define UM = {i ∈ {1, . . . , n} | w(kδ) = wM} and
Um = {i ∈ {1, . . . , n} | wj(kδ) = wm}; by hypothesis we know UM ∩Um = ∅.
Now, we are ready to use property (ii) in the theorem statement. Since
({1, . . . , n},∪s∈{1,...,δ} E(Fs(k)) contains a globally reachable node and since
UM and Um are nonempty and disjoint, then Lemma 1.27 implies that there
exists either

• (an out-neighbor of UM ) an edge (iM , jM ) ∈ E(Fs(kδ)) with iM ∈ UM ,
jM ∈ {1, . . . , n} \ UM , and s ∈ {1, . . . , δ}; or

• (an out-neighbor of Um) an edge (im, jm) ∈ E(Fs(kδ)) with im ∈ Um,
jm ∈ {1, . . . , n} \ Um, and s ∈ {1, . . . , δ}.

Without loss of generality, suppose that an edge (iM , jM ) exists and let
s0 ∈ {1, . . . , δ} be the first time index for which this happens. We have the
following two facts.

First, for every s ∈ {1, . . . , s0 − 1}, there does not exist any edge (i, h)
with i ∈ UM and h /∈ UM , and, thus, for all i ∈ UM ;

wi(kδ + 1) =
n

∑

j=1

(F1(k))ijwj(kδ) =
∑

h∈UM

(F1(k))ihwh(kδ)

=
(

∑

h∈UM

(F1(k))ih(k)
)

wM = wM .

The same argument can be repeated for F2(k), . . . , Fs(k), so that wi(kδ +
s) = wM for all i ∈ UM .

Second, if i /∈ UM at time kδ, then wi(kδ+s) < wM for all s ∈ {1, . . . , s0−
1}. To see this, we compute

wi(kδ + 1) =
n

∑

j=1

(F1(k))ijwj(kδ) = (F1(k))iiwi(kδ) +
n

∑

j=1,j 6=i

(F1(k))ijwj(kδ)

≤ (F1(k))iiwi(kδ) +
(

n
∑

j=1,j 6=i

(F1(k))ij

)

wM

≤ αwi(kδ) + (1 − α)wM < wM ,

where we used the assumption of non-degeneracy with parameter α ∈ ]0, 1].
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The same argument can be repeated for the subsequent multiplications by
the matrices F2(k), . . . , Fs(k).

We finally reach time s0 and compute

wiM
(kδ + s0) =

n
∑

j=1

(Fs0
(k))iM jwj(kδ + s0 − 1)

= (Fs0
(k))iM jM

wjM
(kδ + s0 − 1) +

n
∑

j=1,j 6=jM

(Fs0
(k))iM jwj(kδ + s0 − 1)

< (Fs0
(k))iM jM

wM +
n

∑

j=1,j 6=jM

(Fs0
(k))iM jwj(kδ + s0 − 1) ≤ wM .

This implies that wiM
((k +1)δ) < wM , so that iM does not belong to UM at

time (k + 1)δ. That is, the cardinality of UM decreases at least by one after
(k + 1)δ. Since {1, . . . , n} is finite, after repeating this argument at most
n − 1 times, we have that UM becomes empty at time (k + n − 1)δ. (Here
we are assuming that the out-neighbor always exists for UM ; an analogous
argument can be made for the general case.) This is enough to guarantee
that V (w((k + n)δ)) < wM − wm = V (w(kδ)). This is what we need to
conclude that lim

k→+∞
dist(w(kδ), diag(R)) = 0. In summary, this concludes

the proof of Theorem 1.63. �

We conclude this section by establishing convergence to an individual
point, rather than a set of points.

Proof of Proposition 1.67. We adopt the same notation as above, that is, as
in the proof of Theorem 1.63. Since F (k) ∈ Fδ(α), the set of sequence points
{w(kδ) | k ∈ N} belongs to the convex hull of all the components of the initial
condition, that is, [mini wi(0), maxi wi(0)]n. Since [mini wi(0), maxi wi(0)]n

is compact, there exists a convergent subsequence {w(klδ) | l ∈ N} to a
point c1n. We also notice that for any kl ∈ N, we have wi((kl + k)δ) ∈
[mini wi(klδ), maxi wi(klδ)]

n, for all i ∈ {1, . . . , n} and k ∈ N. Because
lim

l→+∞
w(klδ) = c1n we know that lim

l→+∞
[min

i
wi(klδ), max

i
wi(klδ)]

n = c1n.

Therefore, any sequence {w((kl + k)δ) | k ∈ N}, for l ∈ N, must converge to
c1n. This implies that lim

k→+∞
w(kδ) = c1n. �

85

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 1: An introduction to distributed algorithms

1.8.6 Proofs of Theorems 1.79 and 1.80

Proof of Theorem 1.79. Let us prove fact (i). Because Tridn(a, b, a) is a real
symmetric matrix, Tridn(a, b, a) is normal and its 2-induced norm—that is,
its largest singular value—is equal to the magnitude of its eigenvalue with
the largest magnitude. Based on this information and on the eigenvalue
computation in Lemma 1.77, we compute

‖Tridn(a, b, a)‖2 = max
i∈{1,...,n}

∣

∣

∣

∣

b + 2a cos

(

iπ

n + 1

)∣

∣

∣

∣

≤ |b| + 2|a| max
i∈{1,...,n}

∣

∣

∣

∣

cos

(

iπ

n + 1

)∣

∣

∣

∣

≤ |b| + 2|a| cos

(

π

n + 1

)

.

Because we assumed that |b|+2|a| = 1 and because cos( π
n+1) < 1 for any n ≥

2, the 2-induced norm of Tridn(a, b, a) is strictly less than 1. Additionally,
for ℓ > 0, we bound from above the magnitude of the curve x, as

‖x(ℓ)‖2 = ‖Tridn(a, b, a)ℓx0‖2 ≤
(

|b| + 2|a| cos

(

π

n + 1

))ℓ

‖x0‖2.

In order to have ‖x(ℓ)‖2 < ε‖x0‖2, it is sufficient to require that log ε >

ℓ log
(

|b| + 2|a| cos
(

π
n + 1

))

, that is,

ℓ >
log ε−1

− log
(

|b| + 2|a| cos
(

π
n + 1

)) . (1.8.2)

The upper bound now follows by noting that, as t → 0, we have

− 1

log(1 − 2|a|(1 − cos t))
=

1

|a|t2 + O(1).

Let us now show the lower bound. Assume, without loss of generality, that
ab > 0 and consider the eigenvalue b + 2a cos( π

n+1) of Tridn(a, b, a). Note
that |b + 2a cos( π

n+1)| = |b| + 2|a| cos( π
n+1). (If ab < 0, then consider the

eigenvalue b + 2a cos( nπ
n+1).) For n > 2, define the unit-length vector

vn =

√

2

n + 1







sin π
n+1
...

sin nπ
n+1






∈ Rn, (1.8.3)

and note that, by Lemma 1.77(i), vn is an eigenvector of Tridn(a, b, a) with
eigenvalue b + 2a cos( π

n+1). The trajectory x with initial condition vn sat-

isfies ‖x(ℓ)‖2 =
(

|b| + 2|a| cos
(

π
n+1

))ℓ
‖vn‖2, and therefore, it will enter

B(1n, ε‖vn‖2) only when ℓ satisfies equation (1.8.2). This completes the
proof of fact (i).
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Next, we prove fact (ii). Clearly, all eigenvalues of the matrix Tridn(a, b, 0)
are strictly inside the unit disk. For ℓ > 0, we compute

Tridn(a, b, 0)ℓ

= bℓ
(

In +
a

b
Tridn(1, 0, 0)

)ℓ
= bℓ

n−1
∑

j=0

ℓ!

j!(ℓ − j)!

(a

b

)j
Tridn(1, 0, 0)j ,

because of the nilpotency of Tridn(1, 0, 0). Now, we can bound from above
the magnitude of the curve x, as

‖x(ℓ)‖2 = ‖Tridn(a, b, 0)ℓx0‖2

≤ |b|ℓ
n−1
∑

j=0

ℓ!

j!(ℓ − j)!

(a

b

)j ∥

∥ Tridn(1, 0, 0)jx0

∥

∥

2
≤ ea/bℓn−1 |b|ℓ ‖x0‖2.

Here, we used ‖Tridn(1, 0, 0)jx0‖2 ≤ ‖x0‖2 and max{ ℓ!
(ℓ−j)! | j ∈ {0, . . . , n−

1}} ≤ ℓn−1. Therefore, in order to have ‖x(ℓ)‖2 < ε‖x0‖2, it suffices that
log(ea/b) + (n − 1) log ℓ + ℓ log |b| ≤ log ε, that is,

ℓ − n − 1

− log |b| log ℓ >
a
b − log ε

− log |b| .

A sufficient condition for ℓ − α log ℓ > β, for α, β > 0, is that ℓ ≥ 2β +
2α max{1, log α}. For, if ℓ ≥ 2α, then log ℓ is bounded from above by the
line ℓ/2α + log α. Furthermore, the line ℓ/2α + log α is a lower bound
for the line (ℓ − β)/α if ℓ ≥ 2β + 2α log α. In summary, it is true that
‖x(ℓ)‖2 ≤ ε‖x(0)‖2 whenever

ℓ ≥ 2
a
b − log ε

− log |b| + 2
n − 1

− log |b| max

{

1, log
n − 1

− log |b|

}

.

This completes the proof of the upper bound, that is, fact (ii).

The proof of fact (iii) is similar to that of fact (i). Because Circn(a, b, c) is
circulant, it is also normal and each of its singular values corresponds to an
eigenvector–eigenvalue pair. From Lemma 1.77(ii) and from the assumption
a + b + c = 1, it is clear that the eigenvalue corresponding to i = n is equal
to 1; this is the largest singular value of Circn(a, b, c) and the corresponding
eigenvector is 1n. We now compute the second largest singular value:

max
i∈{1,...,n−1}

∥

∥

∥
b + (a + c) cos

(

i2π

n

)

+
√
−1(c − a) sin

(

i2π

n

)

∥

∥

∥

C

=
∥

∥

∥
1 − (a + c)

(

1 − cos
(2π

n

)

)

+
√
−1(c − a) sin

(

2π

n

)

∥

∥

∥

C

.

Here, ‖·‖C is the norm in C. Because of the assumptions on a, b, c, the second
largest singular value is strictly less than 1. In the orthogonal decomposition
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induced by the eigenvectors of Circn(a, b, c), we assume that the vector y0

has a component yave along the eigenvector 1n. For ℓ > 0, we bound the
distance of the curve y(ℓ) from yave1n as

‖y(ℓ) − yave1n‖2

= ‖Circn(a, b, c)ℓy0 − yave1n‖2 = ‖Circn(a, b, c)ℓ
(

y0 − yave1n

)

‖2

≤
∥

∥

∥1 − (a + c)
(

1 − cos
(2π

n

)

)

+
√
−1(c − a) sin

(

2π

n

)

∥

∥

∥

ℓ

C

‖y0 − yave1n‖2.

This proves that limℓ→+∞ y(ℓ) = yave1n. Also, for α = a + c, β = c − a and
as t → 0, we have

− 1

log
(

(

1 − α(1 − cos t)
)2

+ β2 sin2 t
)1/2

=
2

(α − β2)t2
+ O(1).

Here, β2 < α because a, c ∈ ]0, 1[. From this, one deduces the upper bound
in (iii).

Now, consider the eigenvalues λn = b+(a+c) cos
(

2π
n

)

+
√
−1(c−a) sin

(

2π
n

)

and λn = b+(a+c) cos
(

(n−1)2π
n

)

+
√
−1(c−a) sin

(

(n−1)2π
n

)

of Circn(a, b, c),

and its associated eigenvectors (cf. Lemma 1.77(ii))

vn =











1
ω
...

ωn−1











∈ Cn, vn =











1
ωn−1

...
ω











∈ Cn. (1.8.4)

Note that the vector vn + vn belongs to Rn. Moreover, its component
yave along the eigenvector 1n is zero. The trajectory y with initial condition

vn +vn satisfies ‖y(ℓ)‖2 = ‖λℓ
nvn +λ

ℓ
nvn‖2 = |λn|ℓ‖vn +vn‖2, and therefore

it will enter B(0n, ε‖vn + vn‖2) only when

ℓ >
log ε−1

− log
∥

∥

∥
1 − (a + c)

(

1 − cos
(

2π
n

)

)

+
√
−1(c − a) sin

(

2π
n

)

∥

∥

∥

C

.

This completes the proof of fact (iii). �

Proof of Theorem 1.80. We prove fact (i) and observe that the proof of
fact (ii) is analogous. Consider the change of coordinates

x(ℓ) = P+

[

x′
ave(ℓ)
y(ℓ)

]

= x′
ave(ℓ)1n + P+

[

0
y(ℓ)

]

,

where x′
ave(ℓ) ∈ R and y(ℓ) ∈ Rn−1. A quick calculation shows that x′

ave(ℓ) =
1
n1T

nx(ℓ), and the similarity transformation described in equation (1.6.7)

88

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 1: An introduction to distributed algorithms

implies

y(ℓ + 1) = Tridn−1(a, b, a) y(ℓ), and x′
ave(ℓ + 1) = (b + 2a)x′

ave(ℓ).

Therefore, xave = x′
ave. It is also clear that

x(ℓ + 1) − xave(ℓ + 1)1n

= P+

[

0
y(ℓ + 1)

]

=
(

P+

[

0 0
0 Tridn−1(a, b, a)

]

P−1
+

)

(x(ℓ) − xave(ℓ)1n).

Consider the matrix in parentheses determining the trajectory ℓ 7→ (x(ℓ) −
xave(ℓ)1n). This matrix is symmetric, its singular values are 0 and the singu-
lar values of Tridn−1(a, b, a), and its eigenvectors are 1n and the eigenvectors
of Tridn−1(a, b, a) (padded with an extra zero). These facts are sufficient to
duplicate, step by step, the proof of fact (i) in Theorem 1.79. Therefore, the
trajectory ℓ 7→ (x(ℓ) − xave(ℓ)1n) satisfies the stated properties. �

1.9 EXERCISES

E1.1 (Orthogonal and permutation matrices). Prove that

(i) the set of orthogonal matrices is a group;

(ii) the set of permutation matrices is a group; and

(iii) each permutation matrix is orthogonal.

E1.2 (Doubly stochastic matrices). Show that the set of doubly stochastic matri-
ces is convex and that it contains the set of permutation matrices. Find in the
literature as many distinct proofs of Theorem 1.1 as possible.
Hint: A proof is contained in Horn and Johnson (1985). A second proof method
is based on methods from combinatorics.

E1.3 (Circulant matrices). Given two n×n circulant matrices C1 and C2, show that
the following hold:

(i) CT
1 , C1 + C2 and C1C2 are circulant; and

(ii) C1C2 = C2C1.

E1.4 (Spectral radius and ∞-induced norm of a row-stochastic matrix). Show
that the spectral radius and the ∞-induced norm of a row-stochastic matrix are
1.
Hint: Let A ∈ Rd×d be stochastic. First, show ‖A‖∞ ≤ 1 by direct algebraic ma-
nipulation. Second, use the bound in Lemma 1.5 to show that ρ(A) ≤ 1. Finally,
conclude the proof by noting that 1 is an eigenvalue of A.
Hint: An alternative proof that ρ(A) = 1 is as follows. First, use Geršgorin disks
Theorem 1.2 to show that spec(A) is contained in the unit disk centered at the
origin. Second, note that ρ(A) ≥ 1, since 1 is an eigenvalue of A.

E1.5 (Positive semidefinite matrix defined by a doubly stochastic and irre-
ducible matrix). Let A ∈ Rn×n be doubly stochastic and irreducible. Show
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that the matrix

In − A
T
A

is positive semidefinite and that its eigenvalue 0 is simple.

E1.6 (M-matrices). This exercise summarizes some properties of the so-called M-
matrices (see Fiedler, 1986). A matrix A ∈ Rn×n is an M-matrix (resp. an M0-
matrix) if

(i) all the off-diagonal elements of A are zero or negative; and

(ii) there exist a nonnegative matrix C ∈ Rn×n and k > ρ(C) (resp. k ≥
ρ(C)) such that A = kIn − C.

Show that:

(i) the matrix B ∈ Rn×n is an M-matrix if

(a) all the off-diagonal elements of B are zero or negative; and

(b) there exists a vector v ∈ Rn with positive entries such that Bv

has positive entries;

(ii) if A is an M0-matrix, irreducible and singular, then there exists x ∈ Rn

with positive entries such that Ax = 0 and rank(A) = n − 1; and

(iii) if A is an M-matrix, then all eigenvalues of A have positive real parts.

E1.7 (Decomposition of a stochastic matrix). Consider the matrix

T =

2

6

6

6

6

6

4

1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . .
. . .

...
0 . . . 0 1 −1
1
n

1
n

. . . 1
n

1
n

3

7

7

7

7

7

5

∈ R
n×n

.

Show that:

(i) T is invertible.

(ii) For a stochastic matrix F ∈ Rn×n, there exist Ferr ∈ R(n−1)×(n−1) and
cerr ∈ R1×(n−1) such that

TFT
−1 =

»

Ferr 0(n−1)×1

cerr 1

–

.

Moreover, if F is symmetric, then cerr = 01×(n−1).

E1.8 This exercise establishes two extensions of the LaSalle Invariance Principle. Con-
sider the same setup and assumptions as in Theorem 1.19, and remove the as-
sumption that the set W is closed. Prove the following two conclusions.

(i) Each evolution with initial condition in W approaches a set of the form
V −1(c)∩(S ∪(∂W \ W )), where c is a real constant and S is the largest
positively invariant set contained in {w ∈ W | V (f(w)) = V (w)}.

(ii) Each evolution γ : Z≥0 → W with image(γ) ⊂ W approaches a set of the
form V −1(c)∩S, where c is a real constant and S is the largest positively
invariant set contained in {w ∈ W | V (f(w)) = V (w)}.
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Hint: Regarding part (i), follow the same steps as in the proof of Theorem 1.21 in
Section 1.8.1 with the following difference: even though the set Ω(γ) is not a subset
of W in general, the set Ω(γ)∩W is a subset of W and is positively invariant.

E1.9 (The closed map defined by a finite collection of continuous maps). Let
f1, . . . , fm : X → X be continuous functions, where X is a d-dimensional space
chosen among Rd, Sd, and the Cartesian products Rd1 ×Sd2 , for some d1 +d2 = d.
Define the set-valued map T : X ⇉ X by

T (x) = {f1(x), . . . , fm(x)}.

Show that T is closed on X.

E1.10 (Overapproximation Lemma). Prove Lemma 1.24.

E1.11 (Acyclic digraphs). Let G be an acyclic digraph. Show that:

(i) G contains at least one sink, that is, a vertex without out-neighbors;

(ii) G contains at least one source, that is, a vertex without in-neighbors;
and

(iii) in an appropriate ordering of the vertices of G, the adjacency matrix A

is lower-triangular, that is, all its entries above the main diagonal vanish.
Hint: Order the vertices of G according to their distance to a sink.

E1.12 (A sufficient condition for a matrix to be primitive). Show that if A ∈
Rn×n is nonnegative, irreducible, and has a positive element on the diagonal, then
A is primitive. Give an example that shows that this condition is sufficient but
not necessary, that is, find a primitive matrix with no positive element on the
diagonal.
Hint: See Exercise E1.23 below for a candidate matrix.

E1.13 (Condensation digraph). This exercise studies the decomposition of a digraph
G in its strongly connected components. A subgraph H is a strongly connected
component of G if H is strongly connected and any other subgraph of G strictly
containing H is not strongly connected. The condensation digraph of G, denoted
C(G), is defined as follows: the nodes of C(G) are the strongly connected compo-
nents of G, and there exists a directed edge in C(G) from node H1 to node H2 if
and only if there exists a directed edge in G from a node of H1 to a node of H2.
Show that:

(i) every condensation digraph is acyclic;

(ii) a digraph contains a globally reachable node if and only if its condensa-
tion digraph contains a globally reachable node; and

(iii) a digraph contains a directed spanning tree if and only if its condensation
digraph contains a directed spanning tree.

E1.14 (Incidence matrix). Given a weighted digraph G of order n, choose an arbi-
trary ordering of its edges. Define the incidence matrix H(G) ∈ R|E|×n of G by
specifying that the row of H(G) corresponding to edge (i, j) has an entry 1 in
column i, an entry −1 in column j, and all other entries equal to zero. Show that

H(G)T
WH(G) = L(G) + L(rev(G)),

where W ∈ R|E|×|E| is the diagonal matrix with aij in the entry corresponding to
edge (i, j).
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E1.15 (From digraphs to stochastic matrices and back). Let G be a weighted di-
graph of order n with adjacency matrix A, out-degree matrix Dout, and Laplacian
matrix L. Define the following matrices:

F1 = (κIn + Dout)
−1(κIn + A), for κ ∈ R>0,

F2 = In − εL, for ε ∈ [0, min{(Dout)
−1
ii | i ∈ {1, . . . , n}}[.

Perform the following tasks:

(i) compute the entries of F1 and F2 as a function of the entries of A(G);

(ii) show that the matrices F1 and F2 are row-stochastic;

(iii) identify the least restrictive conditions on G such that the matrices F1

and F2 are doubly stochastic; and

(iv) determine under what conditions a row-stochastic matrix can be writ-
ten in the form F1, or F2 for some appropriate digraph (and for some
appropriate scalars κ and ε).

E1.16 (Metropolis–Hastings weights from the theory of Markov chains). Given
an undirected graph G of order n, define a weighted adjacency matrix A with
entries

aij =
1

1 + max{|N (i)|, |N (j)|}
,

for (i, j) ∈ E. Perform the following tasks:

(i) show that the weighted degree of any vertex is strictly smaller than 1;

(ii) use (i) to justify that ε = 1 can be chosen in Exercise E1.15 for the
construction of the matrix F2; and

(iii) express the exponential convergence factor rexp(F2) as a function of the
eigenvalues of the Laplacian of G.

E1.17 (Some properties of products of stochastic matrices). Show the following
holds:

(i) If the matrices A1, . . . , Ak are nonnegative, row-stochastic, or doubly
stochastic, respectively, then their product A1 · · ·Ak is non-negative, row-
stochastic, or doubly stochastic, respectively.

(ii) If the nonnegative matrices A1, . . . , Ak have strictly positive diagonal
elements, then their product A1 · · ·Ak has strictly positive diagonal ele-
ments.

(iii) Assume that G1, . . . , Gk are digraphs associated with the nonnegative
matrices A1, . . . , Ak and that these matrices have strictly positive diag-
onal elements. If the digraph G1 ∪ . . .∪Gk is strongly connected, then
the matrix A1 · · ·Ak is irreducible.

E1.18 (Disagreement function). The quadratic form associated with a symmetric
matrix B ∈ Rn×n is the function x 7→ xT Bx. Given a digraph G of order n, the
disagreement function ΦG : Rn → R is defined by

ΦG(x) =
1

2

n
X

i,j=1

aij(xj − xi)
2
. (E1.1)
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Show that the following are true:

(i) the disagreement function is the quadratic form associated with the sym-
metric positive-semidefinite matrix

P (G) =
1

2
(Dout(G) + Din(G) − A(G) − A(G)T );

(ii) P (G) = 1
2

`

L(G) + L(rev(G))
´

.

E1.19 (Weight-balanced graphs and connectivity). Let G be a weighted digraph
and let A be a nonnegative n × n matrix. Show the following statements:

(i) if G is weight-balanced and contains a globally reachable node, then it is
strongly connected;

(ii) if A is doubly stochastic and its associated weighted digraph contains a
globally reachable node, then its associated weighted digraph is strongly
connected; and

(iii) if A is doubly stochastic and a column of
Pn−1

k=0 Ak is positive, then
Pn−1

k=0 Ak is positive.

E1.20 (The Laplacian matrix is positive semidefinite). Without relying on the
Geršgorin disks Theorem 1.2, show that if the weighted digraph G is undirected,
then the matrix L(G) is symmetric positive semidefinite. (Note that the proof of
statement (i) in Theorem 1.37 relies on Geršgorin disks Theorem 1.2).

E1.21 (Properties of the BFS algorithm). Prove Lemma 1.28.

E1.22 (LCR algorithm). Consider the following LCR algorithm for leader election:

(i) Give a UID assignment to each processor for which Ω(n2) messages are
sent; and

(ii) give a UID assignment to each processor for which only O(n) messages
are sent.

(iii) Show that the average number of messages sent is O(n log n), where the
average is taken over all possible ordering of the processors on the ring,
each ordering assumed to be equally likely.

E1.23 (Properties of a stochastic matrix and its associated digraph). Consider
the stochastic matrices

A1 =
1

2

2

4

0 1 1
1 0 1
1 1 0

3

5 and A2 =
1

2

2

6

6

4

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

3

7

7

5

.

Define and draw the associated digraphs G1 and G2. Without relying on the
characterization in Propositions 1.33 and 1.35, perform the following tasks:

(i) show that the matrices A1 and A2 are irreducible and that the associated
digraphs G1 and G2 are strongly connected;

(ii) show that the matrices A1 and A2 are primitive and that the associated
digraphs G1 and G2 are strongly connected and aperiodic; and

(iii) show that the averaging algorithm associated with A2 converges in a
finite number of steps.
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E1.24 (Compactness of the set of non-degenerate matrices with respect to a
parameter). Show that, for any α ∈ ]0, 1], the set of non-degenerate matrices
with respect to α is compact.

E1.25 (Laplacian flow: Olfati-Saber and Murray, 2004). Let G be a weighted
directed graph with a globally reachable node. Define the Laplacian flow on Rn

by

ẋ = −L(G)x,

or, equivalently in components,

ẋi =
X

j∈Nout(i)

aij(xj − xi), i ∈ {1, . . . , n}.

Perform the following tasks:

(i) Find the equilibrium points of the Laplacian flow.

(ii) Show that, if G is undirected, then the disagreement function (see Exer-
cise E1.18) is monotonically non-increasing along the Laplacian flow.

(iii) Given x0 = ((x0)1, . . . , (x0)n) ∈ Rn, show that the solution t 7→ x(t) of
the Laplacian flow starting at x0 verifies

min{(x0)1, . . . , (x0)n} ≤ xi(t) ≤ max{(x0)1, . . . , (x0)n},

for all t ∈ R≥0. Use this fact to deduce that the solution t 7→ x(t) is
bounded.

(iv) For G undirected, use (i)-(iii) to apply the LaSalle Invariance Principle in
Theorem 1.20 and show that the solutions of the Laplacian flow converge
to diag(Rn).

(v) Find an example G such that, with the notation in Exercise E1.18, the
symmetric matrix L(G)T P (G) + P (G)L(G) is indefinite.
Hint: To show that the matrix is indefinite, it suffices to find x1, x2 ∈
Rn such that x1(L(G)T P (G) + P (G)L(G))x1 < 0 and x2(L(G)T P (G) +
P (G)L(G))x2 > 0.

(vi) Show that the Euler discretization of the Laplacian flow is the Laplacian-
based averaging algorithm.

E1.26 (Log–Sum–Exp consensus: Tahbaz-Salehi and Jadbabaie, 2006). Pick
α ∈ R \ {0} and define the function fα : Rn → R by

fα(x) = α log
“ 1

n

n
X

i=1

exi/α
”

.

Show that:

(i) lim
α→0−

fα(x) = min{x1, . . . , xn} and lim
α→0+

fα(x) = max{x1, . . . , xn}; and

(ii) lim
α→+∞

fα(x) = lim
α→−∞

fα(x) =
1

n
(x1 + · · · + xn).

Next, let A ∈ Rn×n be a non-degenerate, doubly stochastic matrix whose associ-
ated digraph contains a globally reachable node. Given such a matrix A, consider
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the discrete-time dynamical system

wi(ℓ + 1) = α log
“

n
X

j=1

aij ewj(ℓ)/α
”

.

(iii) Show that w(ℓ) → fα(w(0))1n as ℓ → +∞.

E1.27 (The theory of Markov chains and random walks on graphs). List as
many connections as possible between the theory of averaging algorithms discussed
in Section 1.6.2 and the theory of Markov chains. Some relevant references on
Markov chains include Seneta (1981) and Lovász (1993).
Hint: There is a one-to-one correspondence between averaging algorithms and
Markov chains. A homogeneous Markov chains corresponds precisely to a time-
independent averaging algorithm. A reversible Markov chain corresponds precisely
to a symmetric stochastic matrix.

E1.28 (Distributed hypothesis testing: Rao and Durrant-Whyte, 1993; Olfati-
Saber et al., 2006). Let hγ , for γ ∈ Γ in a finite set Γ, be a set of alternative
hypotheses about an uncertain event. Suppose that n nodes take measurements
zi, for i ∈ {1, . . . , n}, related to the event. Assume that each observation is
conditionally independent of all other observations, given any hypothesis.

(i) Using Bayes’ Theorem and the independence assumption, show that the
a posteriori probabilities satisfy

p(hγ |z1, . . . , zn) =
p(hγ)

p(z1, . . . , zn)

n
Y

i=1

p(zi|hγ).

(ii) Suppose that the nodes form a undirected unweighted connected syn-
chronous network with adjacency matrix A. Consider the discrete-time
dynamical system

πi(ℓ + 1) =
“

πi(ℓ)
n

Y

j=1

π
aij

j (ℓ)
”1/(1+dout(i))

.

Fix γ ∈ Γ, set πi(0) = p(zi|hγ), and show that π(ℓ) → n

v

u

u

t

n
Y

i=1

p(zi|hγ)1n

as ℓ → +∞.

(iii) What information does each node need in order to compute the maximum
a posteriori estimate, that is, to estimate the most likely hypothesis?
Hint: Can you compute p(z1, . . . , zn), given knowledge of p(hγ) and of
Qn

i=1 p(zi|hγ)?
As a bibliographic note, the variable πi is referred to as the belief in the seminal
work by Pearl (1988).

E1.29 (Bounds on vector norms). Prove Lemma 1.82.

E1.30 (The “n-bugs problem” and cyclic interactions). The “n-bugs problem”
related to the pursuit curves from mathematics, inquires about what the paths of
n bugs, not aligned initially, are when they chase one another. Simple versions of
the problem (e.g., for three bugs starting at the vertices of an equilateral triangle)
were studied as early as the nineteenth century. It was in Watton and Kydon
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(1969) that a general solution for the general n-bugs problem for non-collinear
initial positions was given. The bugs trace out logarithmic spirals that eventually
meet at the same point, and it is not necessary that they move with constant
velocity. Surveys about cyclic pursuit problems are given in the papers in Watton
and Kydon (1969) and Marshall et al. (2004). Cyclic pursuit, has also been studied
recently in the multi-agent and control literature; see, for example Bruckstein
et al. (1991), Marshall et al. (2004), and Smith et al. (2005). In particular, the
paper Marshall et al. (2004) extends the n-bugs problem to the case of n kinematic
unicycles evolving in continuous time.

Consider the simplified scenario of the n-bugs problem placed on a circle of
radius r and suppose that the bugs’ motion is constrained to be on that circle.
Assume that agents are ordered counterclockwise with identities i ∈ {1, . . . , n},
where, for convenience, we identify n + 1 with 1. Denote by pi(ℓ) = (r, θi(ℓ)) the
sequence of positions of bug i, initially at pi(0) = (r, θi(0)). We illustrate two
scenarios of interest in Figure E1.1 and we describe them in some detail below.

θi+1

θi

θi−1

(a)

θi+1

θi

θi−1

(b)

Figure E1.1 An illustration of the n-bugs problem. In (a), agent i looks at the position of
agent i+1 and moves toward it by an amount proportional to their distance.
In (b), agent i looks at the position of agents i + 1 and i − 1 and moves
toward the one which is furthest by an amount proportional to the difference
between the two distances. In both cases, the proportionality constant is k.

Cyclic pursuit. Suppose that each bug is chasing the closest counterclockwise
neighbor (according to the order we have given them on the circle), see
Figure E1.1(a). In other words, each bug feels an attraction toward the
closest counterclockwise neighbor that can be described by the equation

θi(ℓ + 1) = (1 − k)θi(ℓ) + kθi+1(ℓ), ℓ ∈ Z≥0,

where k ∈ [0, 1]. Determine for which values of k the bugs converge to a
configuration for which distc(θi+1, θi) = distc(θi, θi−1) for all i ∈ {1, . . . , n}.
Observe that the bugs will approach this equally spaced configuration while
moving around the circle indefinitely.

Cyclic balancing. Suppose that each bug makes a compromise between chasing
its closest counterclockwise neighbor and the closest clockwise neighbor, see
Figure E1.1(b). In other words, each bug feels an attraction towards the
closest counterclockwise and clockwise neighbors that can be described by
the equation

θi(ℓ + 1) = kθi+1(ℓ) + (1 − 2k)θi(ℓ) + kθi−1(ℓ), ℓ ∈ Z≥0,

where k ∈ [0, 1]. Perform the following two tasks:
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(i) Determine for which values of k the bugs converge to a configuration
for which distc(θi+1, θi) = distc(θi, θi−1) for all i ∈ {1, . . . , n}.

(ii) Show that the bugs will approach this equally spaced configuration
while each of them converges to a stationary position on the circle.

Hint: Rewrite the cyclic pursuit and cyclic balancing systems in terms of the inter-
bug distances, that is, in terms of di(ℓ) = distc(θi+1(ℓ), θi(ℓ)), i ∈ {1, . . . , n}, ℓ ∈
Z≥0. Find the matrices that describe the linear iterations in these new coordinates.
Show that the agreement space, that is, the diagonal set in Rn, is invariant under
the dynamical systems. Finally, determine which values of k make each system
converge to the agreement space. Lemma 1.77 might be of use in this regard.
Regarding part (ii)b), recall that an exponentially decaying sequence is summable.
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BFS algorithm 31
DFS algorithm 33
Dijkstra algorithm 34
flooding algorithm 48
floodmax algorithm 50
LCR algorithm 52
distributed Bellman-Ford algorithm 54
Linear combination algorithm 56
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Subject Index

k-center problem, 36
k-median problem, 36

agreement configuration,
58

algorithm
agreement, see

algorithm, averaging
averaging, 57

adjacency-based, 57
convergence speed of,

63
Laplacian-based, 58

completion, 44
consensus, see

algorithm, averaging
distributed, 42

linear, 56, 71
uniform, 42

alphabet
communication, 42

attractivity
global, 19

uniform, 23
local, 18

uniform, 23

Bachmann–Landau
symbols, 7, 46, 64

basic memory unit, 45
BFS tree, see tree,

breadth-first
spanning

Byzantine failure, 44

chain, 27
complexity

average, see
complexity, expected

communication, 45
expected, 46
problem, 47
space, 45
time, 45

condensation digraph, see
digraph, condensation

consensus
average, 62
Log–Sum–Exp, 93

control structures, 44, 47
control system

allowable initial states
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continuous-time
continuous-space, 17

discrete-time
continuous-space, 17

evolution map of, 17
evolution of, 17
input space of, 17
state space of, 17
vector field of, 17
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coefficients, 11

curve, 9
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curvature of
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of, 10
parameterization of, 9
radius of curvature of,

10
tangent vector of, 10

cycle, see graph, cycle
and digraph, cycle
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cyclic pursuit, 95

DFS tree, see tree,
depth-first spanning

diagonal set, 6
diameter, 9
digraph, 24

acyclic, 26, 90
aperiodic, 26, 39
clique of, 25
complete, 25
condensation, 27, 90
cycle, 26
diameter, 30
directed path, 26
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shortest, 31

distance, 30
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edge set of, 24
in-neighbor, 25, 28
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maximal clique of, 25
node, see digraph,
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out-neighbor, 25
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directed, see digraph,
directed path
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tree, spanning
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subgraph of, 25

induced, 25
spanning, 25

topologically balanced,
25

undirected, 24
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27, 39, 59

in-degree, 25
out-degree, 25
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weighted, see weighted
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distance, 7

Lp, 7
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see digraph, distance
Cartesian product, 8
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counterclockwise, 7
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dynamical system, 17
allowable initial states
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continuous-time

continuous-space, 17
discrete-time
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evolution of, 17
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states of, 21
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evolution of, 21
fixed point of, 22
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time-dependent, 23
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vector field of, 17

edge, see digraph, edge
and graph, edge
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simple, 12

equal-neighbor averaging
rule, see algorithm,
averaging,
adjacency-based
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function
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generalized Bezout
identity, 76
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connected component

of, 26
cycle, 26
diameter, 31
directed, see digraph
directed version of, 24
distance, 31
edge, 24
edge set of, 24
Eulerian, 28
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neighbor, 25
node, see graph, vertex
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length, 31
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radius, 31

vertex set of, 24
group, 10
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LaSalle Invariance Prin-
ciple

for continuous-time dy-
namical systems,
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for discrete-time dy-
namical systems, 20,
89

for set-valued discrete-
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systems, 22
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Lie derivative, 20
linear iteration, see

algorithm,
distributed, linear

Lyapunov function, see
function, Lyapunov
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composition, 6
image of, 6
inverse, 6
level set of, 6
overapproximation, 24
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support of, 6

Markov chain, 70, 94
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matrix of
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circulant, 12, 88
tridiagonal, 66

column-stochastic, 11
convergence time of, 63
convergent, 14
doubly stochastic, 11,

37, 62, 88
exponential

convergence factor of,
63

incidence, see weighted
digraph, incidence
matrix of

irreducible, 15, 38
Laplacian, see weighted

digraph, Laplacian
matrix of

M0-, 89
M-, 89
nonnegative, 11
normal, 11
orthogonal, 10
permutation, 11
positive, 11, 38, 39
primitive, 15, 39, 61
reducible, 15
row-stochastic, 11, 37
semi-convergent, 14
singular values, 12
special orthogonal, 10
spectral radius, 13

essential, 14
spectrum, 12
stochastic, 11, 89, 91,

92
Toeplitz, 11

tridiagonal, 66
tridiagonal

augmented, 68
unitarily similar, 13
unitary, 13

message, 42
basic, 45

message-generation
function, 42

standard, 43
metric space, 7

Metropolis–Hastings
weights, 91

minimum-weight
spanning tree, see
tree, spanning,
minimum-weight

neighborhood
of a point, 8
of a set, 8

network
evolution, 43
synchronous, 41

non-degenerate sequence
of stochastic
matrices, 59

norm
Lp, 7
matrix

p-induced, 13

open lune, 8
Overapproximation

Lemma, 24
overapproximation

system, 24

Perron–Frobenius
theorem

for irreducible matrices,
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for positive matrices,
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for primitive matrices,
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n-bugs, 94
BFS tree computation,

47
broadcast, 47
hypothesis testing, 94
leader election, 50
shortest-paths tree

computation, 53
uncapacited facility

location, 36
processor, 16

allowable initial values,
42

state, 42
set, 42

projection, 9

ring digraph, see
digraph, ring

set
boundary of, 5
convex, 11
globally asymptotically

stable, 19
uniformly, 23

globally attractive, 19
uniformly, 23

interior of, 5
locally asymptotically

stable, 18
uniformly, 23

locally attractive, 18,
23
uniformly, 23

path connected, 9
positively invariant, 18

strongly, 22
weakly, 22

simply connected, 9
stable, 18

uniformly, 23
unstable, 18

sink, see digraph, sink of
source, see digraph,

source of
stability, 18

global asymptotic, 19
uniform, 23

local asymptotic, 18
uniform, 23

uniform, 23
state machine, 16

allowable initial states
of, 16

evolution map of, 16
evolution of, 16
input space of, 16
state space of, 16
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state-transition function,
42

subgraph, see digraph,
subgraph of

synchronization, 72

tangent space, 6
token, 47
traveling salesperson

tour, 36
tree, 26

breadth-first spanning,
31, 47

child in, 27
depth-first spanning, 33
directed, 27

depth of, 30
spanning, see tree,

spanning
parent in, 27
root of, 27
rooted, see tree,

directed
shortest-paths, 34

siblings in, 27
spanning, 27

minimum-weight, 36
vertex

predecessor of, 27
successor of, 27

unique identifier, 41
unstability, 18

vector field
control-affine, 17
driftless, 17
time-dependent, 17

vertex, see digraph,
vertex and graph,
vertex

Vicsek’s model, see
algorithm, averaging,
adjacency-based

weighted digraph, 29
adjacency matrix of,

29, 37

unweighted, 29

in-degree matrix of, 30

incidence matrix of, 90

Laplacian matrix of,
40, 92

out-degree matrix of,
30

shortest-paths tree of,
see tree,
shortest-paths

undirected, 29

unweighted version of,
29

vertex

in-degree, 30

out-degree, 30

weight-balanced, 30,
37, 92

weighted depth, 31

weighted diameter, 31

weighted distance, 31,
36

weighted radius, 31
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γarc : arc-length parametrization, 9

O(g) : big O Bachmann–Landau symbol, 7

Ω(g) : big Omega Bachmann–Landau symbol, 7

Θ(g) : big Theta Bachmann–Landau symbol, 7

∂S : boundary of the set S, 5

|S| : number of elements of the finite set S, 5

S1 × S2 : Cartesian product of S1 and S2, 6
∏

a∈A Sa : Cartesian product of the collection of sets {Sa}a∈A, 6

Sn : Cartesian product of n copies of S, 6

∅ : the empty set, 5

G∩G′ : intersection of graphs G and G′, 25

G∪G′ : union of graphs G and G′, 25

[a, b] : closed interval between the numbers a and b, 6

]a, b[ : open interval between the numbers a and b, 6

f : S → T : map f from set S to set T , 6

f ◦ g : composition of the maps f and g, 6

f−1 : inverse map of a function f , 6

f−1(x) : level set of a function f corresponding to a value x, 6

Tf : overapproximation map associated to a time-dependent
evolution f , 24

h : S ⇉ T : set-valued map h from set S to set T , 6

A > 0 : a symmetric positive definite matrix A, 10

A ≥ 0 : a symmetric positive semidefinite matrix A, 10

AT : transpose of a real matrix A, 10

U∗ : conjugate transpose of a complex matrix U , 10

y[i] : Z≥0 → An : trajectory describing the messages received by processor
i, 43

Hmax : k-center function, 36

HΣ : k-median function, 36

S : network, 41
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SF : network associated to F ∈ Rn×n, 57

‖x‖p : Lp-norm of a vector x, 7

‖A‖p : p-induced norm of a matrix A, 13

w[i] : state of processor i, 42

w
[i]
0 : initial state of processor i, 43

W [i] : state set of processor i, 42

W
[i]
0 : set of allowable initial values for processor i, 42

rexp(A) : exponential convergence factor of A ∈ Rn×n, 63

{Sa}a∈A : collection of sets indexed by the index set A, 6

x ∈ S : x is an element of the set S, 5

R ⊂ S : R is a subset of S, 5

R ( S : R is a strict subset of S, 5

S1 ∩S2 : intersection of sets S1 and S2, 6

∩a∈A Sa : intersection product of the collection of sets {Sa}a∈A, 6

S1 ∪S2 : union of sets S1 and S2, 6

∪a∈A Sa : union of the collection of sets {Sa}a∈A, 6

ei : the vector in Rd whose entries are zero except for the ith
entry, which is one, 6

1d : the vector in Rd whose entries are all equal to one, 6

1d− : shorthand for (1,−1, 1, . . . , (−1)d−2, (−1)d−1) ∈ Rd, 69

0d : the vector in Rd whose entries are all equal to zero, 6

A : communication alphabet, 42

A(G) : adjacency matrix of G, 29

ATrid±
n (a, b) : augmented tridiagonal matrix, 68

B(x, ε) : open ball of center x and radius ε, 8

B(x, ε) : closed ball of center x and radius ε, 8

CC(DA) : communication complexity of a distributed algorithm DA,
45

κabs : absolute curvature, 10

κsigned : signed curvature, 10

C : set of complex numbers, 6

Cn×m : set of n × m complex matrices, 10

Circn(a, b, c) : tridiagonal circulant matrix, 66

Din(G) : weighted in-degree matrix of G, 30

Dout(G) : weighted out-degree matrix of G, 30

din(v) : weighted in-degree of a vertex v, 30

dout(v) : weighted out-degree of a vertex v, 30

diag(Sn) : diagonal set of the Cartesian product Sn, 6
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diag(v) : square matrix with components of vector v in the diago-
nal, 10

diam(S) : diameter of the set S, 9

diam(G) : diameter of G, 30

dist : distance function, 7, 8

distc : clockwise distance, 7

distcc : counterclockwise distance, 7

distg : geodesic distance, 7

distp : Lp-distance, 7

distG : distance in G, 30

wdistG : weighted distance in G, 31

DA : distributed algorithm, 42

E(G) : edges of G, 24

Ecmm : set of communication links in a network of processors or
in a robotic network, 41

F(S) : collection of finite subsets of the set S, 5

G : a graph or a digraph, 24

idS : identity map on a set S, 6

In : n × n identity matrix, 10

image(f) : image of the map f , 6

1R : indicator map associated with a set R, 6

int(S) : interior of the set S, 5

I : set of unique identifiers, 41

kernel(A) : kernel subspace of a matrix A, 10

L(G) : Laplacian matrix of G, 40

LfV : Lie derivative of a function V along a vector field f , 20

msg : message-generation function, 42

MST : minimum-weight spanning tree, 36

NG(v) : set of neighbors of v in G, 25

N in
G (v) : set of in-neighbors of v in G, 25

N out
G (v) : set of out-neighbors of v in G, 25

null : null message, 42

N : set of natural numbers, 6

nout : outward normal vector, 10

P(S) : collection of subsets of the set S, 5

projW : projection onto the set W , 9

Rn×m : set of n × m real matrices, 10

R : set of real numbers, 6

R≥0 : set of non-negative real numbers, 6
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R>0 : set of positive real numbers, 6

radius(v, G) : radius of v in G, 30

ρ : radius of curvature, 10

rank(A) : rank of a matrix A, 10

SC(DA) : space complexity of a distributed algorithm DA, 45

ρ(A) : spectral radius of a matrix A, 13

ρess(A) : essential spectral radius of a matrix A, 14

spec(A) : spectrum of a matrix A, 12

Sd : sphere of dimension d, 6

stf : state-transition function, 42

Tε(A) : ε-convergence time of A ∈ Rn×n, 63

TRd : tangent space of Rd, 6

TSd : tangent space of Sd, 6

TC(DA) : time complexity of a distributed algorithm DA, 45

TSP : traveling salesperson tour, 36

TBFS : breadth-first spanning (BFS) tree, 31

TDFS : depth-first spanning (DFS) tree, 33

Tshortest-paths : shortest-paths tree, 34

Tridn(a, b, c) : tridiagonal Toeplitz matrix, 66

V (G) : vertices of G, 24

Z≥0 : set of non-negative integer numbers, 6
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