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What we have seen in the previous lecture

Cooperative robotic network model
e proximity graphs
e control and communication law, task, execution
e time, space, and communication complexity

e analysis agree and pursue algorithm

Complexity analysis is challenging even in 1 dimension! Blend of math
@ geometric structures
e distributed algorithms
o stability analysis

@ linear iterations
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What we will see in this lecture

Basic motion coordination tasks:
get together at a point, stay connected, deploy over a region

Design coordination algorithms that achieve these
tasks and analyze their correctness and time complexity

Expand set of math tools: invariance principles for
non-deterministic systems, geometric optimization, non-
smooth stability analysis

Robustness against link failures, agents’ arrivals and de-
partures, delays, asynchronism

Image credits: jupiterimages and Animal Behavior
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@ Rendezvous and connectivity maintenance
@ The rendezvous objective
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Rendezvous objective

Objective:

achieve multi-robot rendezvous; i.e. arrive at the same location of space,
while maintaining connectivity

r-disk connectivity
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We have to be careful...

Blindly “getting closer” to neighboring agents might break overall connectivity
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Network definition and rendezvous tasks

The objective is applicable for general robotic networks
Saisk; SLD and Sec-disks
and the relative-sensing networks S4;, and S35 i
We adopt the discrete-time motion model
M(f—&—l) [1]( )—l—u[i](ﬁ)7 ie{l,...,n}

Also for the relative-sensing networks

PR+ 1) =pld () + RY (o), ie{1,... n}
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The rendezvous task via aggregate objective functions

Coordination task formulated as function minimization

Diameter convex hull Perimeter relative convex hull
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The rendezvous task formally

Let S = ({1,...,n}, R, Ec;am) be a uniform robotic network
The (exact) rendezvous task Trendezvous: X* — {true,false} for S is

ﬂendezvous(mll]a v 7x[n])
_ Jtrue, if 2l = 2Vl for all (4,5) € Eem (2, ..., 2",
BRE: alse, otherwise

For € € Ry, the e-rendezvous task e rendesvous: (R?)™ — {true,false} is

Z-rendezvous(P) = true

= I —avig ({p ] (.7) € Fenm(P)} )2 < e, i €{L,....n}
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Constraint sets for connectivity

Design constraint sets with key properties
e Constraints are flexible enough so that network does not get stuck

e Constraints change continuously with agents’ position

r-disk connectivity visibility connectivity
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Enforcing range-limited links — pairwise

Pairwise connectivity maintenance problem:
Given two neighbors in Ggisk(r), find a rich set of
control inputs for both agents with the property that, after moving,
both agents are again within distance r

If ||pld(¢) — pl1(¢)|| < r, and remain in connectivity set,
then [[pfl(¢ +1) —pll(e+ 1) <r
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Enforcing range-limited links — w/ all neighbors

Definition (Connectivity constraint set)

Consider a group of agents at positions P = {p[ll, e ,p["]} C R?. The
connectivity constraint set of agent i with respect to P is

Xdlsk p[] P m{Xdlsk p[] | VIS P\{pm} s.t. ||q p[z]||2 < ’l”}

{

Same procedure over sparser graphs means fewer constraints: Grp(r) has
same connected components as Gaisk(r) and is spatially distributed over

Gaisk(r)

Martinez & Corté
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Enforcing range-limited line-of-sight links — pairwise

For Qs = {q € Q | dist(q,0Q) > 0} d-contraction of compact nonconvex
Q C R?

Pairwise connectivity maintenance problem:
Given two neighbors in Gyisdisk,@;, find a rich set of
control inputs for both agents with the property that, after moving,
both agents are again within distance r and visible to each other in Qs

visibility region of agent 4 visibility pairwise constraint set

Martinez & Cortés (UCSD)
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Enforcing range-limited line-of-sight links — w/ all
neighbors

Definition (Line-of-sight connectivity constraint set)

Consider a group of agents at positions P = {p[ll, e p[”]} in a nonconvex
allowable environment )s. The line-of-sight connectivity constraint sets
of agent 7 with respect to P is

Xvis—disk(p[ilv P; Qé) = ﬂ {Xvis-disk(p[i]a q; Q5) | q S P\ {p[l]}}

Fewer constraints can be generated via sparser graphs with the same
connected components and spatially distributed over
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Circumcenter control and communication law

For X =R% X =S?or X = R4 x S%, d = dy +
dy, circumcenter CC(W) of a bounded set W C
X is center of closed ball of minimum radius that
contains W

Circumradius CR(W) is radius of this ball

[Informal description:]
At each communication round each agent performs the following
tasks: (i) it transmits its position and receives its neighbors’ positions;
(ii) it computes the circumcenter of the point set comprised of its
neighbors and of itself. Between communication rounds, each robot
moves toward this circumcenter point while maintaining connectivity
with its neighbors using appropriate connectivity constraint sets.
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Circumcenter control and communication law

[lustration of the algorithm execution
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Circumcenter control and communication law

Formal algorithm description

Robotic Network: Sgisx with a discrete-time motion model,
with absolute sensing of own position, and
with communication range r, in R?

Distributed Algorithm: circumcenter
Alphabet: L = RYU {null}
function msg(p, 1)
1: return p
function ctrl(p,y)

1 Pgoal := CC({p} U {preva | for all non-null pyeva € y})
2: X = Xdisk(p, {prcvd | for all non-null Prevd € y})
3: return fti(p, pgoar, X) — p
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Simulations
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Some bad news...

Circumcenter algorithms are nonlinear discrete-time dynamical systems

xop1 = f(xg)

To analyze convergence, we need at least f continuous — to use classic
Lyapunov/LaSalle results

But circumcenter algorithms are discontinuous because of changes in
interaction topology




Alternative idea

Fixed undirected graph G, define fixed-topology circumcenter algorithm

fG . (Rd)n - (Rd)n’ fG,i(pla e 7pn) = fti(p7pgoal7 X) —Pp

Now, there are no topological changes in fg, hence fg is continuous

Define set-valued map T¢e : (R%)™ — P((R?)") A

Tee(p1s---y0n) = {fa(p1,---,pn) | G connected} iz
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Non-deterministic dynamical systems

Given T : X — P(X), a trajectory of T is se-
quence {Z, }men, C X such that

Tm+1 € T(xm), m €Ny

T is closed at z if 2., — @, Y, — y With y,, € T(x,,) imply y € T(z)
Every continuous map 7": R¢ — R? is closed on R¢

A set C'is

e weakly positively invariant if, for any pg € C, there exists p € T'(po)
such that p € C

e strongly positively invariant if, for any py € C, all p € T(po) verifies
peC

A point pg is a fized point of T if pg € T(po)
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LaSalle Invariance Principle — set-valued maps

V: X — R is non-increasing along 7" on S C X if

V(2") < V(x) for all 2’ € T(x) and all x € S

Theorem (LaSalle Invariance Principle)

For S compact and strongly invariant with V continuous and non-
increasing along closed T on S

Any trajectory starting in S converges to largest weakly invariant set
contained in {x € S| Iz’ € T(z) with V(z') = V(z)}
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Correctness

Tec is closed and diameter is non-increasing

Recall set-valued map T¢c : (R?)" — P((R9)")
Tee(piy---s0n) = {fg(P1,-..,pn) | G connected}

Tec is closed: finite combination of individual continuous maps
Define

Vaiam (P) = diam(co(P)) = max {||p; — p;|| | i,j € {1,...,n}}
diag(R)™) = {(p,-...p) € R))" | p e R}

The function Vijam = diamoco: (R?)™ — R werifies:

Q@ Viiam is continuous and invariant under permutations;
Q Viiam(P) = 0 if and only if P € diag((R?)");

Q@ Viiam s non-increasing along Tee
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Correctness via LaSalle Invariance Principle

To recap
Q@ T¢c is closed
@ V =diam is non-increasing along T¢¢

@ Evolution starting from Py is contained in co(Fp) (compact and strongly
invariant)

Application of LaSalle Invariance Principle: trajectories starting at Py
converge to M, largest weakly positively invariant set contained in

{P € co(Ry) | 3P’ € Tee(P) such that diam(P’) = diam(P)}

Have to identify M! In fact, M = diag((R%)™) N co(Fy)

Convergence to a point can be concluded with a little bit of extra work
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Correctness

Theorem (Correctness of the circumcenter laws)

Ford e N, r € Ryg and € € Ry, the following statements hold:

Q o0n Syisk, the law CCircumcenter (With control magnitude bounds and
relaxzed G-connectivity constraints) achieves Trendezvous;

@ on Sip, the law CCcircumcenter achieves T rendezvous
Furthermore,
Q if any two agents belong to the same connected component at £ € Ny, then

they continue to belong to the same connected component subsequently;
and

© for each evolution, there exists P* = (p},...,p}) € (R))™ such that:

@ the evolution asymptotically approaches P*, and
@ for eachi,j € {1,...,n}, either p; = pj, or ||pi — pjlla > r (for the
networks Saisk and SLp) or ||pi — pj|lec > 7 (for the network Sec-aisk)-

Similar result for visibility networks in non-convex environments
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Correctness — Time complexity

Theorem (Time complexity of circumcenter lawrs

For r € Ry and € €]0,1], the following statements hold:
@ on the network Saisk, evolving on the real line R (i.e., with d = 1),
TC(ZendezvouSaCCcircumcenter) S @(n),
@ on the network Sip, evolving on the real line R (i.e., with d =1),
TC(T(re)-rendesvous> CCoircumcenter) € ©(n? log(ne™1)); and

Similar results for visibility networks

17, 2009
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Robustness of circumcenter algorithms

Push whole idea further!, e.g., for robustness against link failures

B

topology Gy topology G2 topology G3

Look at evolution under link failures as outcome of nondeterministic
evolution under multiple interaction topologies

P — {evolution under G, evolution under G5, evolution under Gz}
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Rendezvous

Corollary (Circumcenter algorithm over Ggig(r) on R%)

For {Pp, }men, synchronous execution with link failures such that union of any
¢ € N consecutive graphs in execution has globally reachable node

Then, there exists (p*,...,p*) € diag((RY)"™) such that

P, — (p*,...,p") as m— 400

Proof uses

Tee,o(P) ={fg, oo fa,(P)
ngl G, has globally reachable node}

March 17, 2009
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Deployment

Objective: optimal task allocation and space partitioning
optimal placement and tuning of sensors

What notion of optimality? What algorithm design?

e top-down approach: define aggregate function measuring “goodness” of
deployment, then synthesize algorithm that optimizes function

e bottom-up approach: synthesize “reasonable” interaction law among
agents, then analyze network behavior
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Coverage optimization

DESIGN of performance metrics
@ how to cover a region with n minimum-radius overlapping disks?

@ how to design a minimum-distortion (fixed-rate) vector quantizer?
(Lloyd ’57)

@ where to place mailboxes in a city / cache servers on the internet?

ANALYSIS of cooperative distributed behaviors
(ol I S S

@ how do animals share territory? what
if every fish in a swarm goes toward
center of own dominance region?

Barlow, Hexagonal territories, Animal Behav-
ior, 1974

@ what if each vehicle goes to center of mass of own Voronoi cell?

@ what if each vehicle moves away from closest vehicle?
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Expected-value multicenter function

Objective: Given sensors/nodes/robots/sites (p1, ..., p,) moving in
environment @) achieve optimal coverage

¢: RY — Rsq density

f:R>¢ — R non-increasing and piecewise
continuously differentiable, possibly with fi-
nite jump discontinuities

maximize Hexp(P1,---,Pn) = Eo e nax }f(Hq—pill)

FRREE}
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Hexp-optimality of the Voronoi partition

Alternative expression in terms of Voronoi partition,

Mol 0) =3 / = nl2)éta)dg

for (p1,...,pn) distinct

Proposition

Let P ={p1,...,pn} € F(S). For any performance function f and for any
partition {W1,...,W,} C P(S) of S,

Hexp(pla"'7pn7‘/1(P)7"'7VTL(P)) Z Hexp(pla"'vpnvwla"'7Wn)a

and the inequality is strict if any set in {Wy,..., W, } differs from the
corresponding set in {Vi(P),...,V,(P)} by a set of positive measure
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Distortion problem

f(z) = —a*

Ha(pr o) == - [ lla=pilola)da = - Y- Ju(Vi(P
i—1 V Vi(P) i=1
(J4(W, p) is moment of inertia). Note

Hdist(ph cee 7me17 .. 7Wn)

== Iy (Wi, CM (W, )—Zare% i)Ipi — CMg (W) |3

i=1

Proposition

Let {Wh,...,Wy} C P(S) be a partition of S. Then,

Haist (CMp(W1), ..., CM(Wy,), Wi, ..., W,,)
ZHdist(ph"'apnawl,"'awn)7

and the inequality is strict if there exists i € {1,...,n} for which W; has
non- Uam'shing area and p; 7 CM4(W;

Martinez & Cortés (UCSD) Distributed robotic networks March 17, 2009 37 /7
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Area problem

f(z) =1p,q(z), @ € Rxo

Harea,a(pl, e apn) = Z/ 1[0,01](”(] - p2|‘2)¢(q)dq

= Z/ o(q)dq
V;(P)NB(pi,a

= Z areays(Vi(P) N B(pi,a)) = areay (U, B(pi, a)),

Area, measured according to ¢, covered by
the union of the n balls

E(ph a)7 e 7§(pna a)
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Mixed distortion-area problem

f(x) = —a? 1io,q)(z) + b Lg 4 oo[(®), With @ € R5o and b < —a?

Hdist—area,a,b(pla v apn) = - Z J(b(‘/z,a(P)vpl) + barea(b(Q \ U?:lﬁ(piv a))»

Ifb= fa2, f is continuous, we write Haist-arca,o- xtension reads

Hdist—area,a(ph <oy Pns W1> ey Wn)

= >~ (J6(We N Blpi.a).pi) + o areag(Wi 1 (5\ B(pi, ) ).

Proposition (Hagist-area,o-0ptimality of centroid locations)

Let {Wh,...,Wy,} C P(S) be a partition of S. Then,
Hdist—arca,a(CM¢(W1 n E(pl, a)), ey CMd)(Wn n E(pn, a)), Wl, 0000 Wn)
Z Hdist(ply <y Pn, W17 sy Wn)y

and the inequality is strict if there exists i € {1,...,n} for which W; has
non-vanishing area_and p; # CMy,(W; N B(p;. a

[0} o
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Smoothness properties of 'H

Dscn(f) (finite) discontinuities of f
f— and fy, limiting values from the left and from the right

Theorem

Ezpected-value multicenter function Hexp: S™ — R is
Q globally Lipschitz on S™; and
@ continuously differentiable on S™ \ Scoinc, where

OHexp

0
bem P = [ il = pl)olaa

+ Y (@ f) | e B0}

a€Dsen(f) Vi(P)N8B(pi,a)

= integral over V; + integral along arcs in V;

Therefore, the gradient of Hexp 15 spatially distributed over Gp

17, 2009
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Particular gradients

Distortion problem: continuous performance,

OHaist

W_S(P) = 2areay(Vi(P))(CMy(Vi(P)) — pi)
Area problem: performance has single discontinuity,

OHarea,a /
———%(P) = Nou a)#(q)dq
api ( ) Vi(P) N dB(pi,a) tB(pia (

/

@
\ .
Mixed distortion-area: continuous performance (b = —a?),
a’}_(dist—area,a

ap; (P) = 2areay(V;.a(P))(CMy(Via(P)) — pi)

Martinez & C és (UCSD) Distributed robotic networks March 17, 2009



Tuning the optimization problem

Gradients of Harea,as Hdist-area,a,p are distributed over Grp(r)2a

Robotic agents with range-limited interactions can compute gradients of
Harea,a and Hdist—area,a,b as 10Hg as r 2 2a

Proposition (Constant-factor approximation of Hgjs)

Let S € R be bounded and measurable. Consider the mized distortion-area
problem with a € ]0,diam S] and b = — diam(S)2. Then, for all P € S™,

Hdist—area,a,b(P) < Hdist(P) < ﬂQ Hdist—area,a,b(P) < Oa

where 3 = qoirsy € [0,1]

Similarly, constant-factor approximations of Hexp
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Geometric-center laws

Uniform networks Sp and Spp of locally-connected first-order agents in a

polytope Q C R? with the Delaunay and r-limited Delaunay graphs as
communication graphs

All laws share similar structure
At each communication round each agent performs the following
tasks:
@ it transmits its position and receives its neighbors’ positions;
e it computes a notion of geometric center of its own cell
determined according to some notion of partition of the
environment

Between communication rounds, each robot moves toward this center
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VRN-CNTRD ALGORITHM

Optimizes distortion Hgjst

Robotic Network: Spin @, with absolute sensing of own position
Distributed Algorithm: VRN-CNTRD
Alphabet: L = R%U {null}
function msg(p,?)
1: return p

function ctrl(p,y)

1: Vi=QN (N{Hpp, | for all non-null pievaq € y})
2: return CMy (V) —p

Martinez & Cortés (UCSD) Distributed robotic networks March 17, 2009



Simulation

initial configuration gradient descent final configuration

For € € Ry, the e-distortion deployment task

true, if ||p[i] - CI\/|¢(V[i](P))|}2 <e i€{l,...,n},

false, otherwise,

z—distor—dply(P) - {
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Voronoi-centroid law on planar vehicles

Robotic Network: Syehicles in @ with absolute sensing of own position
Distributed Algorithm: VRN-CNTRD-DYNMCS
Alphabet: L = R?U {null}
function msg((p,0),1)
1: return p

function Ctrl((p7 0)7 (psmplda osmpld)7 y)
1: V= QN (N {Hpumpaprewa | for all non-null preva € y})
2: v 1= —kprop(cos b, sind) - (p — CMy(V))

(—sin@, cosf) - (p — CM,(V))
(cosf, sinf) - (p— CMy(V))

3: w = 2kprop arctan

e

return (v,w)
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Algorithm illustration
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Simulation

initial configuration gradient descent final configuration
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LMTD-VRN-NRML algorithm

Optimizes area Harea,

Robotic Network: Spp in @ with absolute sensing of own position and with
communication range r

Distributed Algorithm: LMTD-VRN-NRML
Alphabet: L = R?U {null}
function msg(p,1)

1: return p

function ctrl(p,y)
1: V:=QnN (N{Hpp..q | for all non-null pieva € y})
2: 0= fVﬂﬁE(p,g) nout,E(p,%)(q)¢(q)dq
3: A\, 1= max {)\ | § — fVmE(p+5u,g) &(q)dq is strictly increasing on [0, )\]}
4: return \,v
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Simulation

initial configuration gradient descent final configuration

For r,e € Ry,

,Te-r—arca—dply (P)

_ truev if || fV[i](P)ﬁaﬁ(p[i],g) nout,ﬁ(p[i]’%)(Q)(b(Q)dQHQ S €, (S {1a e an}a
false, otherwise.

Martinez & Cortés (UCSD) networks March 17, 2009



LMTD-VRN-CNTRD algorithm

Optln‘llZE‘b Hdist—area, 73

Robotic Network: Spp in Q with absolute sensing of own position, and with
communication range r

Distributed Algorithm: LMTD-VRN-CNTRD
Alphabet: L = R%U {null}
function msg(p, 1)

1: return p

function ctrl(p,y)

1: V:=Qn B(p, 5)N (ﬂ {Hp p,.va | for all non-null pycvq € y})
2: return CMy (V) —p
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Simulation

initial configuration gradient descent final configuration

For r,e € Ry,

,Te—r—distor—area—dply(P)
{true, if [p1 — M (VII(P)) ||, < € i € {1, n),

false, otherwise.
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Optimizing Hgist via constant-factor approximation

Limited range

run #1: 16 agents,
density ¢ is sum of 4
Gaussians, time invari-
ant, 1st order dynam-
ics

initial configuration gradient descent of H r final configuration
2

Unlimited range

run #2: 16 agents,
density ¢ is sum of 4
Gaussians, time invari-
ant, 1st order dynam-
ics

initial configuration gradient descent of Hexp final configuration
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Correctness of the geometric-center algorithms

Theorem

Ford e N, r € Ryg and € € Ry, the following statements hold.

@ on the network Sp, the law CCyrn-cxtrp and on the network Syenicles, the
law CCvyrn-cntrb-DYNMes DOTh achieve the e-distortion deployment task
Te_distor-dply- Moreover, any ezecution of CCyrx-cxtrn and
CCvrn-cntrp-Dynmes monotonically optimizes the multicenter function Haist;

@© on the network Syp, the law CCryirp-vrn-nrvs achieves the e-r-area
deployment task Te.,-area-dply- Moreover, any execution of CCrarp-van-nrvr
monotonically optimizes the multicenter function Harea,g; and

@ on the network Syp, the law CCryrp-vex-oxntrp aChicves the
e-r-distortion-area deployment task Te.,_distor-area-dply- Moreover, any
execution of CCpryurp-vrx-cxtrp Monotonically optimizes the multicenter
Junction Haist-area, s -
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Time complexity of CCry

-VRN-CNTRD

Assume diam(Q) is independent of n, r and ¢

Theorem (Time complexity of LMTD-VRN-CNTRD law)

Assume the robots evolve in a closed interval Q C R, that is, d =1, and

assume that the density is uniform, that is, ¢ = 1. For r € Ryg and € € R+,
on the network Stp

TC(Z-T-distor-area-dplyv C’CLMTDfVRNfCNTRD) S O(’I’L3 Iog(nf_l))

Martinez & Corté
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Deployment: basic behaviors

“move away from closest” “move towards furthest”

Equilibria? Asymptotic behavior?
Optimizing network-wide function?
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Deployment: 1-center optimization problems

smo(p) =min{|[p —¢|l|¢ € 0Q} Lipschitz 0 € dsmg(p) < p € 1C(Q)
lgo(p) = max{|p —ql [¢ € 0Q}  Lipschitz 0 € dlgy(p) & p=CC(Q)

Locally Lipschitz function V' are differentiable a.e.
Generalized gradient of V is

OV (x) = convex closure{ lim VV(z;) | @i =z, x: ¢ Qv US}
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Deployment: 1-center optimization problems

+ gradient flow of smg  p; = +Ln[0smg|(p) “move away from closest”
— gradient flow of g,  p; = —Ln[0lggl(p)  “move toward furthest”

For X essentially locally bounded, Filippov solution of & = X(z) is
absolutely continuous function ¢ € [to, t1] — z(t) verifying

€ K[X]|(z) = co{iirgoX(xi) |zs —x, s € S}

For V locally Lipschitz, gradient flow is & = Ln[0V](z)

Ln = least norm operator
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Nonsmooth LaSalle Invariance Principle

Evolution of V along Filippov solution ¢ — V(z(t)) is differentiable a.e.

%V(m(t)) e LxV(z(t)={aeR|Ie K[X](x)st.C-v=a, Ve dV(z)}

set-valued Lie derivative

LaSalle Invariance Principle

For S compact and strongly invariant with max L xV(z) <0
Any Filippov solution starting in S converges to largest weakly

invariant set contained in {x €S|0e ZXV(:U)}

E.g., nonsmooth gradient flow & = — Ln[0V](z) converges to critical set
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Deployment: multi-center optimization

sphere packing and disk covering

“move away from closest”:  p; = +Ln(dsmy,(py)(p;) — at fixed V;(P)
“move towards furthest”:  p; = —Ln(0lgy,(py)(pi) — at fixed V;(P)

Aggregate objective functions!
Hep(P) = m/in smy,(p)(pi) = rzl;l? [31lpi — pjll, dist(pi, 0Q)]

Hae(P) = max lgy,(p)(p:) = max [minlg — pill]
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Deployment: multi-center optimization

Critical points of Hg, and Ha. (locally Lipschitz)

e If 0 € int OHsp(P), then P is strict local maximum, all agents have same
cost, and P is incenter Voronoi configuration

e If 0 € int OHq4c(P), then P is strict local minimum, all agents have same
cost, and P is circumcenter Voronoi configuration

Aggregate functions monotonically optimized along evolution

min ELn(Bsmv(p))Hsp(P) >0 max E— Ln(algv(P))Hdc(P) <0

Asymptotic convergence to center Voronoi configurations via nonsmooth
LaSalle
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Outline

@ Rendezvous and connectivity maintenance
@ The rendezvous objective
e Maintaining connectivity
o Circumcenter algorithms
@ Correctness analysis via nondeterministic systems

© Deployment
e Expected-value deployment
o Geometric-center laws
o Disk-covering and sphere-packing deployment
@ Geometric-center laws

© Conclusions

buted robotic netwc



Voronoi-circumcenter algorithm

Robotic Network: Sp in ) with absolute sensing of own position
Distributed Algorithm: VRN-CRCMCNTR

Alphabet: L = R4 U {null}

function msg(p, 1)

1: return p

function ctrl(p,y)

1: Vi=Q N (N{Hpp.w | for all non-null pyeva € y})
2: return CC(V) —p
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Voronoi-incenter algorithm

Robotic Network: Sp in ) with absolute sensing of own position
Distributed Algorithm: VRN-NCNTR

Alphabet: L = R4 U {null}

function msg(p, 1)

1: return p

function ctrl(p,y)

1:V:=0Qn (ﬂ {Hp p,ovq | for all non-null pycvq € y})
2: return z € IC(V) —p
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Correctness of the geometric-center algorithms

For € € R+, the e-disk-covering deployment task

true, if |pf! — CC(VI(P))|2 <, i€ {1,...,n},
false, otherwise,

Te-de-dply (P) = {

For € € R+, the e-sphere-packing deployment task

true, if disty(pld, IC(VII(P))) <, i€ {1,...,n},

false, otherwise,

Tesp-aply(P) = {

Theorem

Ford e N, r € Ryg and € € Ry, the following statements hold.

Q@ on the network Sp, any execution of the law CCyyx-crementr Monotonically
optimizes the multicenter function Hge;

@ on the network Sp, any execution of the law CCyyry-nentr MoONOtonically
optimizes the multicenter function Hsp.
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Summary and conclusions

Examined three basic motion coordination tasks
@ rendezvous: circumcenter algorithms

@ connectivity maintenance: flexible constraint sets in
convex/nonconvex scenarios

@ deployment: gradient algorithms based on geometric centers

Correctness and (1-d) complexity analysis of geometric-center control
and communication laws via

@ Discrete- and continuous-time nondeterministic dynamical systems
@ Invariance principles, stability analysis

@ Geometric structures and geometric optimization
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Motion coordination is emerging discipline

Literature is full of exciting problems, solutions, and tools we have not covered

Formation control, consensus, cohesiveness, flocking, collective
synchronization, boundary estimation, cooperative control over
constant graphs, quantization, asynchronism, delays, distributed
estimation, spatial estimation, data fusion, target tracking, networks
with minimal capabilities, target assignment, vehicle dynamics and
energy-constrained motion, vehicle routing, dynamic servicing
problems, load balancing, robotic implementations,...

Too long a list to fit it here!
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Book coming out in June 2009

Freely available online (forever) at
www.coordinationbook.info

Distributed Control of Robotic Network . s
Istributed -ontrol of Fobotic Retworks @ Self-contained exposition of

graph-theoretic concepts,
distributed algorithms, and

A Mathematical Approach to Motion Coordination Algorithms

Francesco Bullo complexity measures
Jorge Cortés
Sonia Martinez @ Detailed treatment of averaging

and consensus algorithms
interpreted as linear iterations

ﬁ @ @ Introduction of geometric
notions such as partitions,
proximity graphs, and

@ @ multicenter functions

@ Detailed treatment of motion
coordination algorithms for
deployment, rendezvous,

PRINCETON UNIVERSITY PRESS

connectivity maintenance, and
boundary estimation



www.coordinationbook.info

Voronoi partitions

Let (p1,...,pn) € Q™ denote the positions of n points

The Voronoi partition V(P) = {Vi,...,V,} generated by (p1,...,pn)

Vi={q€Q| llg—pill <llg—p;ll, Vj# i}
=QN; HP(pi,p;) where HP(p;, p;) is half plane (p;, p;)

/ —
° / e

3 generators

5 generators 50 generators
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Distributed Voronoi computation

Assume: agent with sensing/communication radius R;
Objective: smallest R; which provides sufficient information for V;

For all i, agent ¢ performs:
1: initialize R; and compute V; = Njijp, —p, 1<z, HP(pis pj)
2: while R; <2max g llpi — ¢l do
3: Ri = 2Ri ~
4:  detect vehicles p; within radius R;, recompute V;
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