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What we have seen in the previous lecture

Cooperative robotic network model

proximity graphs
control and communication law, task, execution
time, space, and communication complexity
analysis agree and pursue algorithm

Complexity analysis is challenging even in 1 dimension! Blend of math
geometric structures
distributed algorithms
stability analysis
linear iterations
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What we will see in this lecture

Basic motion coordination tasks:
get together at a point, stay connected, deploy over a region

CENTROIDAL VORONOI TESSELLATIONS 649

Fig.2.2 A top-viewphotograph,usinga polarizing�lter,of theterritoriesof themale Tilapia
mossambica;eachisa pitduginthesandbyitsoccupant.The boundariesoftheterritories,
therimsofthepits,forma patternofpolygons.The breedingmalesare theblack�sh,which
range in sizefrom about 15cm to 20cm. The gray �share thefemales,juveniles,and
nonbreedingmales.The �shwitha conspicuousspotinitstail,intheupper-rightcorner,
isa Cichlasomamaculicauda.Photographand captionreprinted from G. W. Barlow,
HexagonalTerritories, Animal Behavior,Volume 22,1974,by permissionofAcademic
Press,London.

As anexampleofsynchronoussettlingforwhich theterritoriescanbevisualized,
considerthemouthbreeder�sh(Tilapiamossambica).Territorialmalesofthisspecies
excavatebreedingpitsinsandybottomsby spittingsandaway fromthepitcenters
towardtheirneighbors.Fora highenoughdensity of�sh,thisreciprocalspitting
resultsinsandparapetsthatarevisibleterritorialboundaries.In[3],theresultsof
a controlledexperimentweregiven.Fishwereintroducedintoa largeoutdoorpool
witha uniformsandybottom.Afterthe�shhad establishedtheirterritories,i.e.,
afterthe�nalpositionsofthebreedingpitswereestablished,theparapetsseparating
theterritorieswerephotographed.InFigure2.2,theresultingphotographfrom[3]
isreproduced.The territoriesareseentobepolygonaland,in[27,59],itwasshown
thattheyareverycloselyapproximatedby a Voronoitessellation.

A behavioralmodelforhow the�shestablishtheirterritorieswasgiven in[22,
23,60].When the�shentera region,they�rstrandomlyselectthecentersoftheir
breedingpits,i.e.,thelocationsatwhich theywillspitsand.Theirdesiretoplacethe
pitcentersasfaraway aspossiblefromtheirneighborscausesthe�shtocontinuously
adjustthepositionofthepitcenters.Thisadjustmentprocessismodeledasfollows.
The�sh,intheirdesiretobeasfarawayaspossiblefromtheirneighbors,tendtomove
theirspittinglocationtowardthecentroidoftheircurrentterritory;subsequently,the
territorialboundariesm ustchangesincethe�sharespittingfromdi�erentlocations.
Sinceallthe�shareassumedtobe ofequalstrength,i.e.,theyallpresumablyhave

Design coordination algorithms that achieve these
tasks and analyze their correctness and time complexity

Expand set of math tools: invariance principles for
non-deterministic systems, geometric optimization, non-
smooth stability analysis

Robustness against link failures, agents’ arrivals and de-
partures, delays, asynchronism

Image credits: jupiterimages and Animal Behavior

Mart́ınez & Cortés (UCSD) Distributed robotic networks March 17, 2009 3 / 72



Outline

1 Rendezvous and connectivity maintenance
The rendezvous objective
Maintaining connectivity
Circumcenter algorithms
Correctness analysis via nondeterministic systems

2 Deployment
Expected-value deployment
Geometric-center laws
Disk-covering and sphere-packing deployment
Geometric-center laws

3 Conclusions
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Rendezvous objective

Objective:
achieve multi-robot rendezvous; i.e. arrive at the same location of space,
while maintaining connectivity

r-disk connectivity visibility connectivity
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We have to be careful...

Blindly “getting closer” to neighboring agents might break overall connectivity
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Network definition and rendezvous tasks

The objective is applicable for general robotic networks
Sdisk, SLD and S∞-disk,
and the relative-sensing networks Srs

disk and Srs
vis-disk

We adopt the discrete-time motion model

p[i](` + 1) = p[i](`) + u[i](`), i ∈ {1, . . . , n}

Also for the relative-sensing networks

p
[i]
fixed(` + 1) = p

[i]
fixed(`) + R

[i]
fixedu

[i]
i (`), i ∈ {1, . . . , n}
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The rendezvous task via aggregate objective functions

Coordination task formulated as function minimization

Diameter convex hull Perimeter relative convex hull
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The rendezvous task formally

Let S = ({1, . . . , n},R, Ecmm) be a uniform robotic network
The (exact) rendezvous task Trendezvous : Xn → {true, false} for S is

Trendezvous(x
[1], . . . , x[n])

=

{
true, if x[i] = x[j], for all (i, j) ∈ Ecmm(x[1], . . . , x[n]),

false, otherwise

For ε ∈ R>0, the ε-rendezvous task Tε-rendezvous : (Rd)n → {true, false} is

Tε-rendezvous(P ) = true

⇐⇒ ‖p[i] − avrg
( {

p[j] | (i, j) ∈ Ecmm(P )
})
‖2 < ε, i ∈ {1, . . . , n}
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Constraint sets for connectivity

Design constraint sets with key properties
Constraints are flexible enough so that network does not get stuck
Constraints change continuously with agents’ position

r-disk connectivity visibility connectivity
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Enforcing range-limited links – pairwise

Pairwise connectivity maintenance problem:
Given two neighbors in Gdisk(r), find a rich set of

control inputs for both agents with the property that, after moving,

both agents are again within distance r

If ‖p[i](`)− p[j](`)‖ ≤ r, and remain in connectivity set,
then ‖p[i](` + 1)− p[j](` + 1)‖ ≤ r
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Enforcing range-limited links – w/ all neighbors

Definition (Connectivity constraint set)

Consider a group of agents at positions P = {p[1], . . . , p[n]} ⊂ Rd. The
connectivity constraint set of agent i with respect to P is

Xdisk(p
[i], P ) =

⋂ {
Xdisk(p

[i], q) | q ∈ P \ {p[i]} s.t. ‖q − p[i]‖2 ≤ r
}

Same procedure over sparser graphs means fewer constraints: GLD(r) has
same connected components as Gdisk(r) and is spatially distributed over
Gdisk(r)
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Enforcing range-limited line-of-sight links – pairwise

For Qδ = {q ∈ Q | dist(q, ∂Q) ≥ δ} δ-contraction of compact nonconvex
Q ⊂ R2

Pairwise connectivity maintenance problem:
Given two neighbors in Gvis-disk,Qδ , find a rich set of

control inputs for both agents with the property that, after moving,

both agents are again within distance r and visible to each other in Qδ

visibility region of agent i visibility pairwise constraint set
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Enforcing range-limited line-of-sight links – w/ all
neighbors

Definition (Line-of-sight connectivity constraint set)

Consider a group of agents at positions P = {p[1], . . . , p[n]} in a nonconvex
allowable environment Qδ. The line-of-sight connectivity constraint sets
of agent i with respect to P is

Xvis-disk(p
[i], P ;Qδ) =

⋂ {
Xvis-disk(p

[i], q;Qδ) | q ∈ P \ {p[i]}
}

Fewer constraints can be generated via sparser graphs with the same
connected components and spatially distributed over
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Circumcenter control and communication law

For X = Rd, X = Sd or X = Rd1 × Sd2 , d = d1 +
d2, circumcenter CC(W ) of a bounded set W ⊂
X is center of closed ball of minimum radius that
contains W

Circumradius CR(W ) is radius of this ball

[Informal description:]
At each communication round each agent performs the following
tasks: (i) it transmits its position and receives its neighbors’ positions;
(ii) it computes the circumcenter of the point set comprised of its
neighbors and of itself. Between communication rounds, each robot
moves toward this circumcenter point while maintaining connectivity

with its neighbors using appropriate connectivity constraint sets.
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Circumcenter control and communication law

Illustration of the algorithm execution
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Circumcenter control and communication law

Formal algorithm description

Robotic Network: Sdisk with a discrete-time motion model,
with absolute sensing of own position, and
with communication range r, in Rd

Distributed Algorithm: circumcenter
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: pgoal := CC({p} ∪ {prcvd | for all non-null prcvd ∈ y})
2: X := Xdisk(p, {prcvd | for all non-null prcvd ∈ y})
3: return fti(p, pgoal,X )− p
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Simulations

x

y

z

x
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Some bad news...

Circumcenter algorithms are nonlinear discrete-time dynamical systems

x`+1 = f(x`)

To analyze convergence, we need at least f continuous – to use classic
Lyapunov/LaSalle results

But circumcenter algorithms are discontinuous because of changes in
interaction topology
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Alternative idea

Fixed undirected graph G, define fixed-topology circumcenter algorithm

fG : (Rd)n → (Rd)n, fG,i(p1, . . . , pn) = fti(p, pgoal,X )− p

Now, there are no topological changes in fG, hence fG is continuous

Define set-valued map TCC : (Rd)n → P((Rd)n)

TCC(p1, . . . , pn) = {fG(p1, . . . , pn) | G connected}
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Non-deterministic dynamical systems

Given T : X → P(X), a trajectory of T is se-
quence {xm}m∈N0 ⊂ X such that

xm+1 ∈ T (xm) , m ∈ N0

T is closed at x if xm → x, ym → y with ym ∈ T (xm) imply y ∈ T (x)
Every continuous map T : Rd → Rd is closed on Rd

A set C is
weakly positively invariant if, for any p0 ∈ C, there exists p ∈ T (p0)
such that p ∈ C

strongly positively invariant if, for any p0 ∈ C, all p ∈ T (p0) verifies
p ∈ C

A point p0 is a fixed point of T if p0 ∈ T (p0)
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LaSalle Invariance Principle – set-valued maps

V : X → R is non-increasing along T on S ⊂ X if

V (x′) ≤ V (x) for all x′ ∈ T (x) and all x ∈ S

Theorem (LaSalle Invariance Principle)

For S compact and strongly invariant with V continuous and non-
increasing along closed T on S

Any trajectory starting in S converges to largest weakly invariant set
contained in {x ∈ S | ∃x′ ∈ T (x) with V (x′) = V (x)}

Mart́ınez & Cortés (UCSD) Distributed robotic networks March 17, 2009 25 / 72



Correctness
TCC is closed and diameter is non-increasing

Recall set-valued map TCC : (Rd)n → P((Rd)n)

TCC(p1, . . . , pn) = {fG(p1, . . . , pn) | G connected}

TCC is closed: finite combination of individual continuous maps
Define

Vdiam(P ) = diam(co(P )) = max {‖pi − pj‖ | i, j ∈ {1, . . . , n}}
diag((Rd)n) =

{
(p, . . . , p) ∈ (Rd)n | p ∈ Rd

}
Lemma

The function Vdiam = diam ◦ co: (Rd)n → R+ verifies:
1 Vdiam is continuous and invariant under permutations;
2 Vdiam(P ) = 0 if and only if P ∈ diag((Rd)n);
3 Vdiam is non-increasing along TCC
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Correctness via LaSalle Invariance Principle

To recap
1 TCC is closed
2 V = diam is non-increasing along TCC
3 Evolution starting from P0 is contained in co(P0) (compact and strongly

invariant)

Application of LaSalle Invariance Principle: trajectories starting at P0

converge to M , largest weakly positively invariant set contained in

{P ∈ co(P0) | ∃P ′ ∈ TCC(P ) such that diam(P ′) = diam(P )}

Have to identify M ! In fact, M = diag((Rd)n) ∩ co(P0)

Convergence to a point can be concluded with a little bit of extra work
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Correctness

Theorem (Correctness of the circumcenter laws)

For d ∈ N, r ∈ R>0 and ε ∈ R>0, the following statements hold:
1 on Sdisk, the law CCcircumcenter (with control magnitude bounds and

relaxed G-connectivity constraints) achieves Trendezvous;
2 on SLD, the law CCcircumcenter achieves Tε-rendezvous

Furthermore,
1 if any two agents belong to the same connected component at ` ∈ N0, then

they continue to belong to the same connected component subsequently;
and

2 for each evolution, there exists P ∗ = (p∗1 , . . . , p
∗
n) ∈ (Rd)n such that:

1 the evolution asymptotically approaches P ∗, and
2 for each i, j ∈ {1, . . . , n}, either p∗i = p∗j , or ‖p∗i − p∗j‖2 > r (for the

networks Sdisk and SLD) or ‖p∗i − p∗j‖∞ > r (for the network S∞-disk).

Similar result for visibility networks in non-convex environments
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Correctness – Time complexity

Theorem (Time complexity of circumcenter laws)

For r ∈ R>0 and ε ∈ ]0, 1[, the following statements hold:
1 on the network Sdisk, evolving on the real line R (i.e., with d = 1),

TC(Trendezvous, CCcircumcenter) ∈ Θ(n);
2 on the network SLD, evolving on the real line R (i.e., with d = 1),

TC(T(rε)-rendezvous, CCcircumcenter) ∈ Θ(n2 log(nε−1)); and

Similar results for visibility networks
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Robustness of circumcenter algorithms

Push whole idea further!, e.g., for robustness against link failures

topology G1 topology G2 topology G3

Look at evolution under link failures as outcome of nondeterministic
evolution under multiple interaction topologies

P −→ {evolution under G1, evolution under G2, evolution under G3}
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Rendezvous

Corollary (Circumcenter algorithm over Gdisk(r) on Rd)

For {Pm}m∈N0 synchronous execution with link failures such that union of any
` ∈ N consecutive graphs in execution has globally reachable node

Then, there exists (p∗, . . . , p∗) ∈ diag((Rd)n) such that

Pm → (p∗, . . . , p∗) as m → +∞

Proof uses

TCC,`(P ) = {fG`
◦ · · · ◦ fG1(P ) |

∪`
s=1 Gi has globally reachable node}
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Deployment

Objective: optimal task allocation and space partitioning
optimal placement and tuning of sensors

What notion of optimality? What algorithm design?
top-down approach: define aggregate function measuring “goodness” of
deployment, then synthesize algorithm that optimizes function

bottom-up approach: synthesize “reasonable” interaction law among
agents, then analyze network behavior
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Coverage optimization

DESIGN of performance metrics
1 how to cover a region with n minimum-radius overlapping disks?
2 how to design a minimum-distortion (fixed-rate) vector quantizer?

(Lloyd ’57)
3 where to place mailboxes in a city / cache servers on the internet?

ANALYSIS of cooperative distributed behaviors

4 how do animals share territory? what
if every fish in a swarm goes toward
center of own dominance region?

CENTROIDAL VORONOI TESSELLATIONS 649

Fig.2.2 A top-viewphotograph,usinga polarizing�lter,of theterritoriesof themale Tilapia
mossambica;eachisa pitduginthesandbyitsoccupant.The boundariesoftheterritories,
therimsofthepits,forma patternofpolygons.The breedingmalesare theblack�sh,which
range in sizefrom about 15cm to 20cm. The gray �share thefemales,juveniles,and
nonbreedingmales.The �shwitha conspicuousspotinitstail,intheupper-rightcorner,
isa Cichlasomamaculicauda.Photographand captionreprinted from G. W. Barlow,
HexagonalTerritories, Animal Behavior,Volume 22,1974,by permissionofAcademic
Press,London.

As anexampleofsynchronoussettlingforwhich theterritoriescanbevisualized,
considerthemouthbreeder�sh(Tilapiamossambica).Territorialmalesofthisspecies
excavatebreedingpitsinsandybottomsby spittingsandaway fromthepitcenters
towardtheirneighbors.Fora highenoughdensity of�sh,thisreciprocalspitting
resultsinsandparapetsthatarevisibleterritorialboundaries.In[3],theresultsof
a controlledexperimentweregiven.Fishwereintroducedintoa largeoutdoorpool
witha uniformsandybottom.Afterthe�shhad establishedtheirterritories,i.e.,
afterthe�nalpositionsofthebreedingpitswereestablished,theparapetsseparating
theterritorieswerephotographed.InFigure2.2,theresultingphotographfrom[3]
isreproduced.The territoriesareseentobepolygonaland,in[27,59],itwasshown
thattheyareverycloselyapproximatedby a Voronoitessellation.

A behavioralmodelforhow the�shestablishtheirterritorieswasgiven in[22,
23,60].When the�shentera region,they�rstrandomlyselectthecentersoftheir
breedingpits,i.e.,thelocationsatwhich theywillspitsand.Theirdesiretoplacethe
pitcentersasfaraway aspossiblefromtheirneighborscausesthe�shtocontinuously
adjustthepositionofthepitcenters.Thisadjustmentprocessismodeledasfollows.
The�sh,intheirdesiretobeasfarawayaspossiblefromtheirneighbors,tendtomove
theirspittinglocationtowardthecentroidoftheircurrentterritory;subsequently,the
territorialboundariesm ustchangesincethe�sharespittingfromdi�erentlocations.
Sinceallthe�shareassumedtobe ofequalstrength,i.e.,theyallpresumablyhave

Barlow, Hexagonal territories, Animal Behav-

ior, 1974

5 what if each vehicle goes to center of mass of own Voronoi cell?
6 what if each vehicle moves away from closest vehicle?
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Expected-value multicenter function

Objective: Given sensors/nodes/robots/sites (p1, . . . , pn) moving in
environment Q achieve optimal coverage

φ : Rd → R≥0 density

f : R≥0 → R non-increasing and piecewise
continuously differentiable, possibly with fi-
nite jump discontinuities

maximize Hexp(p1, . . . , pn) = Eφ

[
max

i∈{1,...,n}
f(‖q − pi‖)

]
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Hexp-optimality of the Voronoi partition

Alternative expression in terms of Voronoi partition,

Hexp(p1, . . . , pn) =
n∑

i=1

∫
Vi(P )

f(‖q − pi‖2)φ(q)dq

for (p1, . . . , pn) distinct

Proposition

Let P = {p1, . . . , pn} ∈ F(S). For any performance function f and for any
partition {W1, . . . ,Wn} ⊂ P(S) of S,

Hexp(p1, . . . , pn, V1(P ), . . . , Vn(P )) ≥ Hexp(p1, . . . , pn,W1, . . . ,Wn),

and the inequality is strict if any set in {W1, . . . ,Wn} differs from the
corresponding set in {V1(P ), . . . , Vn(P )} by a set of positive measure
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Distortion problem
f(x) = −x2

Hdist(p1, . . . , pn) = −
n∑

i=1

∫
Vi(P )

‖q − pi‖2
2φ(q)dq = −

n∑
i=1

Jφ(Vi(P ), pi)

(Jφ(W,p) is moment of inertia). Note

Hdist(p1, . . . , pn,W1, . . . ,Wn)

= −
n∑

i=1

Jφ(Wi,CMφ(Wi))−
n∑

i=1

areaφ(Wi)‖pi − CMφ(Wi)‖2
2

Proposition

Let {W1, . . . ,Wn} ⊂ P(S) be a partition of S. Then,

Hdist

(
CMφ(W1), . . . ,CMφ(Wn),W1, . . . ,Wn

)
≥ Hdist(p1, . . . , pn,W1, . . . ,Wn),

and the inequality is strict if there exists i ∈ {1, . . . , n} for which Wi has
non-vanishing area and pi 6= CMφ(Wi)

Mart́ınez & Cortés (UCSD) Distributed robotic networks March 17, 2009 37 / 72



Area problem
f(x) = 1[0,a](x), a ∈ R>0

Harea,a(p1, . . . , pn) =
n∑

i=1

∫
Vi(P )

1[0,a](‖q − pi‖2)φ(q)dq

=
n∑

i=1

∫
Vi(P )∩B(pi,a)

φ(q)dq

=
n∑

i=1

areaφ(Vi(P ) ∩B(pi, a)) = areaφ(∪n
i=1B(pi, a)),

Area, measured according to φ, covered by
the union of the n balls
B(p1, a), . . . , B(pn, a)
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Mixed distortion-area problem
f(x) = −x2 1[0,a](x) + b · 1]a,+∞[(x), with a ∈ R>0 and b ≤ −a2

Hdist-area,a,b(p1, . . . , pn) = −
n∑

i=1

Jφ(Vi,a(P ), pi) + b areaφ(Q \ ∪n
i=1B(pi, a)),

If b = −a2, f is continuous, we write Hdist-area,a. Extension reads

Hdist-area,a(p1, . . . , pn,W1, . . . ,Wn)

= −
n∑

i=1

(
Jφ(Wi ∩B(pi, a), pi) + a2 areaφ(Wi ∩ (S \B(pi, a)))

)
.

Proposition (Hdist-area,a-optimality of centroid locations)

Let {W1, . . . ,Wn} ⊂ P(S) be a partition of S. Then,

Hdist-area,a

(
CMφ(W1 ∩B(p1, a)), . . . ,CMφ(Wn ∩B(pn, a)),W1, . . . ,Wn

)
≥ Hdist(p1, . . . , pn,W1, . . . ,Wn),

and the inequality is strict if there exists i ∈ {1, . . . , n} for which Wi has
non-vanishing area and pi 6= CMφ(Wi ∩B(pi, a)).
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Smoothness properties of Hexp

Dscn(f) (finite) discontinuities of f
f− and f+, limiting values from the left and from the right

Theorem
Expected-value multicenter function Hexp : Sn → R is

1 globally Lipschitz on Sn; and
2 continuously differentiable on Sn \ Scoinc, where

∂Hexp

∂pi
(P ) =

∫
Vi(P )

∂

∂pi
f(‖q − pi‖2)φ(q)dq

+
∑

a∈Dscn(f)

(
f−(a)− f+(a)

) ∫
Vi(P )∩ ∂B(pi,a)

nout,B(pi,a)(q)φ(q)dq

= integral over Vi + integral along arcs in Vi

Therefore, the gradient of Hexp is spatially distributed over GD
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Particular gradients

Distortion problem: continuous performance,
∂Hdist

∂pi
(P ) = 2 areaφ(Vi(P ))(CMφ(Vi(P ))− pi)

Area problem: performance has single discontinuity,
∂Harea,a

∂pi
(P ) =

∫
Vi(P )∩ ∂B(pi,a)

nout,B(pi,a)(q)φ(q)dq

Mixed distortion-area: continuous performance (b = −a2),

∂Hdist-area,a

∂pi
(P ) = 2 areaφ(Vi,a(P ))(CMφ(Vi,a(P ))− pi)
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Tuning the optimization problem

Gradients of Harea,a, Hdist-area,a,b are distributed over GLD(r)2a

Robotic agents with range-limited interactions can compute gradients of
Harea,a and Hdist-area,a,b as long as r ≥ 2a

Proposition (Constant-factor approximation of Hdist)

Let S ⊂ Rd be bounded and measurable. Consider the mixed distortion-area
problem with a ∈ ]0, diam S] and b = − diam(S)2. Then, for all P ∈ Sn,

Hdist-area,a,b(P ) ≤ Hdist(P ) ≤ β2Hdist-area,a,b(P ) < 0,

where β = a
diam(S) ∈ [0, 1]

Similarly, constant-factor approximations of Hexp
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Geometric-center laws

Uniform networks SD and SLD of locally-connected first-order agents in a
polytope Q ⊂ Rd with the Delaunay and r-limited Delaunay graphs as
communication graphs

All laws share similar structure
At each communication round each agent performs the following
tasks:

it transmits its position and receives its neighbors’ positions;
it computes a notion of geometric center of its own cell
determined according to some notion of partition of the
environment

Between communication rounds, each robot moves toward this center
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Vrn-cntrd algorithm
Optimizes distortion Hdist

Robotic Network: SDin Q, with absolute sensing of own position
Distributed Algorithm: Vrn-cntrd
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: V := Q ∩
( ⋂

{Hp,prcvd | for all non-null prcvd ∈ y}
)

2: return CMφ(V )− p
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Simulation

initial configuration gradient descent final configuration

For ε ∈ R>0, the ε-distortion deployment task

Tε-distor-dply(P ) =

{
true, if

∥∥p[i] − CMφ(V [i](P ))
∥∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise,
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Voronoi-centroid law on planar vehicles

Robotic Network: Svehicles in Q with absolute sensing of own position
Distributed Algorithm: Vrn-cntrd-dynmcs
Alphabet: L = R2 ∪ {null}
function msg((p, θ), i)

1: return p

function ctrl((p, θ), (psmpld, θsmpld), y)

1: V := Q ∩
( ⋂ {

Hpsmpld,prcvd | for all non-null prcvd ∈ y
} )

2: v := −kprop(cos θ, sin θ) · (p− CMφ(V ))

3: ω := 2kprop arctan
(− sin θ, cos θ) · (p− CMφ(V ))
(cos θ, sin θ) · (p− CMφ(V ))

4: return (v, ω)
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Algorithm illustration
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Simulation

initial configuration gradient descent final configuration
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Lmtd-Vrn-nrml algorithm
Optimizes area Harea, r

2

Robotic Network: SLD in Q with absolute sensing of own position and with
communication range r

Distributed Algorithm: Lmtd-Vrn-nrml
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: V := Q ∩
( ⋂

{Hp,prcvd | for all non-null prcvd ∈ y}
)

2: v :=
∫

V ∩∂B(p, r
2 )

nout,B(p, r
2 )(q)φ(q)dq

3: λ∗ := max
{

λ | δ 7→
∫

V ∩B(p+δv, r
2 )

φ(q)dq is strictly increasing on [0, λ]
}

4: return λ∗v
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Simulation

initial configuration gradient descent final configuration

For r, ε ∈ R>0,

Tε-r-area-dply(P )

=

{
true, if

∥∥ ∫
V [i](P )∩ ∂B(p[i], r

2 )
nout,B(p[i], r

2 )(q)φ(q)dq
∥∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise.
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Lmtd-Vrn-cntrd algorithm
Optimizes Hdist-area, r

2

Robotic Network: SLD in Q with absolute sensing of own position, and with
communication range r

Distributed Algorithm: Lmtd-Vrn-cntrd
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: V := Q ∩B(p, r
2 ) ∩

( ⋂
{Hp,prcvd | for all non-null prcvd ∈ y}

)
2: return CMφ(V )− p
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Simulation

initial configuration gradient descent final configuration

For r, ε ∈ R>0,

Tε-r-distor-area-dply(P )

=

{
true, if

∥∥p[i] − CMφ(V
[i]
r
2

(P )))
∥∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise.

Mart́ınez & Cortés (UCSD) Distributed robotic networks March 17, 2009 53 / 72



Optimizing Hdist via constant-factor approximation

Limited range

run #1: 16 agents,
density φ is sum of 4
Gaussians, time invari-
ant, 1st order dynam-
ics

initial configuration gradient descent of H r
2

final configuration

Unlimited range

run #2: 16 agents,
density φ is sum of 4
Gaussians, time invari-
ant, 1st order dynam-
ics initial configuration gradient descent of Hexp final configuration
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Correctness of the geometric-center algorithms

Theorem

For d ∈ N, r ∈ R>0 and ε ∈ R>0, the following statements hold.
1 on the network SD, the law CCVrn-cntrd and on the network Svehicles, the

law CCVrn-cntrd-dynmcs both achieve the ε-distortion deployment task
Tε-distor-dply. Moreover, any execution of CCVrn-cntrd and
CCVrn-cntrd-dynmcs monotonically optimizes the multicenter function Hdist;

2 on the network SLD, the law CCLmtd-Vrn-nrml achieves the ε-r-area
deployment task Tε-r-area-dply. Moreover, any execution of CCLmtd-Vrn-nrml

monotonically optimizes the multicenter function Harea, r
2
; and

3 on the network SLD, the law CCLmtd-Vrn-cntrd achieves the
ε-r-distortion-area deployment task Tε-r-distor-area-dply. Moreover, any
execution of CCLmtd-Vrn-cntrd monotonically optimizes the multicenter
function Hdist-area, r

2
.
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Time complexity of CCLmtd-Vrn-cntrd

Assume diam(Q) is independent of n, r and ε

Theorem (Time complexity of Lmtd-Vrn-cntrd law)

Assume the robots evolve in a closed interval Q ⊂ R, that is, d = 1, and
assume that the density is uniform, that is, φ ≡ 1. For r ∈ R>0 and ε ∈ R>0,
on the network SLD

TC(Tε-r-distor-area-dply, CCLmtd-Vrn-cntrd) ∈ O(n3 log(nε−1))
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Deployment: basic behaviors

“move away from closest” “move towards furthest”

Equilibria? Asymptotic behavior?
Optimizing network-wide function?
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Deployment: 1-center optimization problems

smQ(p) = min{‖p− q‖ | q ∈ ∂Q} Lipschitz 0 ∈ ∂ smQ(p) ⇔ p ∈ IC(Q)
lgQ(p) = max{‖p− q‖ | q ∈ ∂Q} Lipschitz 0 ∈ ∂ lgQ(p) ⇔ p = CC(Q)

Locally Lipschitz function V are differentiable a.e.
Generalized gradient of V is

∂V (x) = convex closure
˘

lim
i→∞

∇V (xi) | xi → x , xi 6∈ ΩV ∪ S
¯
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Deployment: 1-center optimization problems

+ gradient flow of smQ ṗi = +Ln[∂ smQ](p) “move away from closest”
− gradient flow of lgQ ṗi = − Ln[∂ lgQ](p) “move toward furthest”

For X essentially locally bounded, Filippov solution of ẋ = X(x) is
absolutely continuous function t ∈ [t0, t1] 7→ x(t) verifying

ẋ ∈ K[X](x) = co{ lim
i→∞

X(xi) | xi → x , xi 6∈ S}

For V locally Lipschitz, gradient flow is ẋ = Ln[∂V ](x)
Ln = least norm operator
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Nonsmooth LaSalle Invariance Principle

Evolution of V along Filippov solution t 7→ V (x(t)) is differentiable a.e.

d
dt

V (x(t)) ∈ L̃XV (x(t)) = {a ∈ R | ∃v ∈ K[X](x) s.t. ζ · v = a , ∀ζ ∈ ∂V (x)}︸ ︷︷ ︸
set-valued Lie derivative

LaSalle Invariance Principle

For S compact and strongly invariant with max L̃XV (x) ≤ 0

Any Filippov solution starting in S converges to largest weakly

invariant set contained in
{

x ∈ S | 0 ∈ L̃XV (x)
}

E.g., nonsmooth gradient flow ẋ = − Ln[∂V ](x) converges to critical set
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Deployment: multi-center optimization
sphere packing and disk covering

“move away from closest”: ṗi = +Ln(∂ smVi(P ))(pi) — at fixed Vi(P )
“move towards furthest”: ṗi = − Ln(∂ lgVi(P ))(pi) — at fixed Vi(P )

Aggregate objective functions!

Hsp(P ) = min
i

smVi(P )(pi) = min
i 6=j

[
1
2‖pi − pj‖, dist(pi, ∂Q)

]
Hdc(P ) = max

i
lgVi(P )(pi) = max

q∈Q

[
min

i
‖q − pi‖

]
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Deployment: multi-center optimization

Critical points of Hsp and Hdc (locally Lipschitz)
If 0 ∈ int ∂Hsp(P ), then P is strict local maximum, all agents have same
cost, and P is incenter Voronoi configuration

If 0 ∈ int ∂Hdc(P ), then P is strict local minimum, all agents have same
cost, and P is circumcenter Voronoi configuration

Aggregate functions monotonically optimized along evolution

min L̃Ln(∂ smV(P ))Hsp(P ) ≥ 0 max L̃− Ln(∂ lgV(P ))
Hdc(P ) ≤ 0

Asymptotic convergence to center Voronoi configurations via nonsmooth
LaSalle
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Voronoi-circumcenter algorithm

Robotic Network: SD in Q with absolute sensing of own position
Distributed Algorithm: Vrn-crcmcntr
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: V := Q ∩
( ⋂

{Hp,prcvd | for all non-null prcvd ∈ y}
)

2: return CC(V )− p
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Voronoi-incenter algorithm

Robotic Network: SD in Q with absolute sensing of own position
Distributed Algorithm: Vrn-ncntr
Alphabet: L = Rd ∪ {null}
function msg(p, i)

1: return p

function ctrl(p, y)

1: V := Q ∩
( ⋂

{Hp,prcvd | for all non-null prcvd ∈ y}
)

2: return x ∈ IC(V )− p
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Correctness of the geometric-center algorithms

For ε ∈ R>0, the ε-disk-covering deployment task

Tε-dc-dply(P ) =

{
true, if ‖p[i] − CC(V [i](P ))‖2 ≤ ε, i ∈ {1, . . . , n},
false, otherwise,

For ε ∈ R>0, the ε-sphere-packing deployment task

Tε-sp-dply(P ) =

{
true, if dist2(p

[i], IC(V [i](P ))) ≤ ε, i ∈ {1, . . . , n},
false, otherwise,

Theorem

For d ∈ N, r ∈ R>0 and ε ∈ R>0, the following statements hold.
1 on the network SD, any execution of the law CCVrn-crcmcntr monotonically

optimizes the multicenter function Hdc;
2 on the network SD, any execution of the law CCVrn-ncntr monotonically

optimizes the multicenter function Hsp.
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Summary and conclusions

Examined three basic motion coordination tasks
1 rendezvous: circumcenter algorithms
2 connectivity maintenance: flexible constraint sets in

convex/nonconvex scenarios
3 deployment: gradient algorithms based on geometric centers

Correctness and (1-d) complexity analysis of geometric-center control
and communication laws via

1 Discrete- and continuous-time nondeterministic dynamical systems
2 Invariance principles, stability analysis
3 Geometric structures and geometric optimization
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Motion coordination is emerging discipline

Literature is full of exciting problems, solutions, and tools we have not covered
Formation control, consensus, cohesiveness, flocking, collective
synchronization, boundary estimation, cooperative control over
constant graphs, quantization, asynchronism, delays, distributed
estimation, spatial estimation, data fusion, target tracking, networks
with minimal capabilities, target assignment, vehicle dynamics and
energy-constrained motion, vehicle routing, dynamic servicing
problems, load balancing, robotic implementations,...

Too long a list to fit it here!
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Book coming out in June 2009

Freely available online (forever) at
www.coordinationbook.info

Self-contained exposition of
graph-theoretic concepts,
distributed algorithms, and
complexity measures

Detailed treatment of averaging
and consensus algorithms
interpreted as linear iterations

Introduction of geometric
notions such as partitions,
proximity graphs, and
multicenter functions

Detailed treatment of motion
coordination algorithms for
deployment, rendezvous,
connectivity maintenance, and
boundary estimation
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Voronoi partitions

Let (p1, . . . , pn) ∈ Qn denote the positions of n points

The Voronoi partition V(P ) = {V1, . . . , Vn} generated by (p1, . . . , pn)

Vi = {q ∈ Q| ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}
= Q ∩j HP(pi, pj) where HP(pi, pj) is half plane (pi, pj)

3 generators 5 generators 50 generators

Return
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Distributed Voronoi computation

Assume: agent with sensing/communication radius Ri

Objective: smallest Ri which provides sufficient information for Vi

For all i, agent i performs:
1: initialize Ri and compute V̂i = ∩j:‖pi−pj‖≤Ri

HP(pi, pj)
2: while Ri < 2 maxq∈bVi

‖pi − q‖ do
3: Ri := 2Ri

4: detect vehicles pj within radius Ri, recompute V̂i

Return
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